| Overall Statistics |
|
Total Trades 2110 Average Win 0.03% Average Loss -0.01% Compounding Annual Return -0.822% Drawdown 4.600% Expectancy -0.003 Net Profit -0.841% Sharpe Ratio -0.291 Loss Rate 70% Win Rate 30% Profit-Loss Ratio 2.35 Alpha -0.033 Beta 1.245 Annual Standard Deviation 0.027 Annual Variance 0.001 Information Ratio -1.029 Tracking Error 0.027 Treynor Ratio -0.006 Total Fees $2121.92 |
from System import *
from QuantConnect import *
from QuantConnect.Orders import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework import *
from QuantConnect.Algorithm.Framework.Execution import *
from QuantConnect.Algorithm.Framework.Risk import *
from QuantConnect.Algorithm.Framework.Selection import *
import numpy as np
import pandas as pd
from scipy.optimize import minimize
class MeanVarianceOptimizationAlgorithm(QCAlgorithmFramework):
'''Mean Variance Optimization Algorithm.'''
def Initialize(self):
''' Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
# Set requested data resolution
self.UniverseSettings.Resolution = Resolution.Minute
self.SetStartDate(2017, 4, 1) #Set Start Date
self.SetEndDate(2018, 4, 9) #Set End Date
self.SetCash(100000) #Set Strategy Cash
tickers = ['IWD', 'MTUM', 'IWN', 'IWM', 'EFA', 'EEM', 'IEF', 'SPY', 'LQD', 'TLT', 'DBC', 'GLD', 'VNQ']
symbols = [ Symbol.Create(ticker, SecurityType.Equity, Market.USA) for ticker in tickers ]
self.minimum_weight = -1
self.maximum_weight = 1
# set algorithm framework models
self.SetUniverseSelection( ManualUniverseSelectionModel(symbols) )
self.SetAlpha( HistoricalReturnsAlphaModel(resolution = Resolution.Daily) )
self.SetPortfolioConstruction( MeanVarianceOptimizationPortfolioConstructionModel() )
self.SetExecution( ImmediateExecutionModel() )
self.SetRiskManagement( NullRiskManagementModel() )
#def OnOrderEvent(self, orderEvent):
# if orderEvent.Status == OrderStatus.Filled:
# self.Debug(orderEvent.ToString())
def maximum_sharpe_ratio(self, returns):
'''Maximum Sharpe Ratio optimization method'''
# Objective function
fun = lambda weights: -self.sharpe_ratio(returns, weights)
# Constraint #1: The weights can be negative, which means investors can short a security.
constraints = [{'type': 'eq', 'fun': lambda w: np.sum(w) - 1}]
size = returns.columns.size
x0 = np.array(size * [1. / size])
bounds = tuple((self.minimum_weight, self.maximum_weight) for x in range(size))
opt = minimize(fun, # Objective function
x0, # Initial guess
method='SLSQP', # Optimization method: Sequential Least SQuares Programming
bounds = bounds, # Bounds for variables
constraints = constraints) # Constraints definition
weights = pd.Series(opt['x'], index = returns.columns)
return opt, weights
def sharpe_ratio(self, returns, weights):
annual_return = np.dot(np.matrix(returns.mean()), np.matrix(weights).T).item()
annual_volatility = np.sqrt(np.dot(weights.T, np.dot(returns.cov(), weights)))
return annual_return/annual_volatility