| Overall Statistics |
|
Total Trades 2152 Average Win 5.30% Average Loss -0.26% Compounding Annual Return 28.612% Drawdown 34.900% Expectancy 1.050 Net Profit 1336.038% Sharpe Ratio 1.058 Probabilistic Sharpe Ratio 43.566% Loss Rate 90% Win Rate 10% Profit-Loss Ratio 20.05 Alpha 0.227 Beta -0.066 Annual Standard Deviation 0.208 Annual Variance 0.043 Information Ratio 0.459 Tracking Error 0.259 Treynor Ratio -3.33 Total Fees $151874.04 |
# https://quantpedia.com/strategies/trading-vix-etfs-v2/
#
# Investment universe consists of SPDR S&P500 Trust ETF (SPY) and ProShares Short S&P500 ETF (SH) for long and short exposure to the
# S&P500 and iPath S&P500 VIX ST Futures ETN (VXX) and VelocityShares Daily Inverse VIX ST ETN (XIV) for long and short exposure to
# short-term VIX futures. First, the relative difference between the front-month VIX futures and spot VIX is calculated
# (contango/backwardation check). If the relative basis is above (below) an upper (lower) buy threshold, BU (BL) determined by the trader,
# it indicates that the market is in contango (backwardation) and that one should hold XIV (VXX) and hedge with SH (SPY). The position is
# closed when the relative basis falls below an upper (lower) sell-threshold, SU (SL), which may be set equal to, or lower (higher) than
# the buy-threshold. A reason why one might want the upper (lower) sell-threshold lower (higher) than the upper (lower) buy-threshold is
# to avoid too-frequent trading. The best results are with a 0% hedge ratio (trader doesn’t use SPY/SH hedging). However, it is possible
# to use multiple different hedging levels with different results (see table 10 in a source academic paper for more options).
from collections import deque
import numpy as np
from QuantConnect.Python import PythonQuandl
class TradingVIXETFsv2(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2010, 1, 1)
self.SetCash(100000)
self.vixy = self.AddEquity('VIXY', Resolution.Daily).Symbol
# Vix futures data.
self.vix_future = self.AddFuture(Futures.Indices.VIX, Resolution.Minute)
# Vix spot.
self.vix_spot = self.AddData(QuandlVix, 'CBOE/VIX', Resolution.Daily).Symbol
# Find the front contract expiring no earlier than in 90 days.
self.vix_future.SetFilter(timedelta(0), timedelta(90))
# Vix futures actiove contract updated on expiration.
self.active_contract = None
self.Schedule.On(self.DateRules.EveryDay(self.vixy), self.TimeRules.AfterMarketOpen(self.vixy), self.Rebalance)
def Rebalance(self):
if self.active_contract:
if self.Securities.ContainsKey(self.vix_spot):
spot_price = self.Securities[self.vix_spot].Price
vix_future_price = self.active_contract.LastPrice
if spot_price == 0 or vix_future_price == 0:
return
relative_basis = vix_future_price / spot_price
# If the relative basis is above an upper buy threshold - BU, it indicates that the market is in contango and that one should hold XIV(long VIXY in our case) and hedge with SH (no hedge in our case).
# If the relative basis is below an lower buy threshold - BL, it indicates that the market is in backwardation and that one should hold VXX(short VIXY in our case) and hedge with SPY (no hedge in our case).
# BU 8%, SU 6%, BL -8%, SL -6% thresholds.
# Short volatility.
if relative_basis >= 1.08:
self.SetHoldings(self.vixy, 1)
if relative_basis >= 1.06:
if self.Portfolio[self.vixy].Invested:
self.Liquidate(self.vixy)
if relative_basis < 1.06 and relative_basis > 0.94:
if self.Portfolio[self.vixy].Invested:
self.Liquidate(self.vixy)
# Long volatility.
if relative_basis <= 0.94:
if self.Portfolio[self.vixy].Invested:
self.Liquidate(self.vixy)
if relative_basis <= 0.92:
self.SetHoldings(self.vixy, -1)
def OnData(self, slice):
chains = [x for x in slice.FutureChains]
cl_chain = None
if len(chains) > 0:
cl_chain = chains[0]
else:
return
if cl_chain.Value.Contracts.Count >= 1:
contracts = [i for i in cl_chain.Value]
contracts = sorted(contracts, key = lambda x: x.Expiry)
near_contract = contracts[0]
self.active_contract = near_contract
class QuandlVix(PythonQuandl):
def __init__(self):
self.ValueColumnName = "VIX Close"import numpy as np
from scipy.optimize import minimize
sp100_stocks = ['AAPL','MSFT','AMZN','FB','BRKB','GOOGL','GOOG','JPM','JNJ','V','PG','XOM','UNH','BAC','MA','T','DIS','INTC','HD','VZ','MRK','PFE','CVX','KO','CMCSA','CSCO','PEP','WFC','C','BA','ADBE','WMT','CRM','MCD','MDT','BMY','ABT','NVDA','NFLX','AMGN','PM','PYPL','TMO','COST','ABBV','ACN','HON','NKE','UNP','UTX','NEE','IBM','TXN','AVGO','LLY','ORCL','LIN','SBUX','AMT','LMT','GE','MMM','DHR','QCOM','CVS','MO','LOW','FIS','AXP','BKNG','UPS','GILD','CHTR','CAT','MDLZ','GS','USB','CI','ANTM','BDX','TJX','ADP','TFC','CME','SPGI','COP','INTU','ISRG','CB','SO','D','FISV','PNC','DUK','SYK','ZTS','MS','RTN','AGN','BLK']
def MonthDiff(d1, d2):
return (d1.year - d2.year) * 12 + d1.month - d2.month
def Return(values):
return (values[-1] - values[0]) / values[0]
def Volatility(values):
values = np.array(values)
returns = (values[1:] - values[:-1]) / values[:-1]
return np.std(returns)
# Custom fee model
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))
# Quandl free data
class QuandlFutures(PythonQuandl):
def __init__(self):
self.ValueColumnName = "settle"
# Quandl short interest data.
class QuandlFINRA_ShortVolume(PythonQuandl):
def __init__(self):
self.ValueColumnName = 'SHORTVOLUME' # also 'TOTALVOLUME' is accesible
# Quantpedia data
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaFutures()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(';')
data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
data['settle'] = float(split[1])
data.Value = float(split[1])
return data
# NOTE: Manager for new trades. It's represented by certain count of equally weighted brackets for long and short positions.
# If there's a place for new trade, it will be managed for time of holding period.
class TradeManager():
def __init__(self, algorithm, long_size, short_size, holding_period):
self.algorithm = algorithm # algorithm to execute orders in.
self.long_size = long_size
self.short_size = short_size
self.weight = 1 / (self.long_size + self.short_size)
self.long_len = 0
self.short_len = 0
# Arrays of ManagedSymbols
self.symbols = []
self.holding_period = holding_period # Days of holding.
# Add stock symbol object
def Add(self, symbol, long_flag):
# Open new long trade.
managed_symbol = ManagedSymbol(symbol, self.holding_period, long_flag)
if long_flag:
# If there's a place for it.
if self.long_len < self.long_size:
self.symbols.append(managed_symbol)
self.algorithm.SetHoldings(symbol, self.weight)
self.long_len += 1
else:
self.algorithm.Log("There's not place for additional trade.")
# Open new short trade.
else:
# If there's a place for it.
if self.short_len < self.short_size:
self.symbols.append(managed_symbol)
self.algorithm.SetHoldings(symbol, - self.weight)
self.short_len += 1
else:
self.algorithm.Log("There's not place for additional trade.")
# Decrement holding period and liquidate symbols.
def TryLiquidate(self):
symbols_to_delete = []
for managed_symbol in self.symbols:
managed_symbol.days_to_liquidate -= 1
# Liquidate.
if managed_symbol.days_to_liquidate == 0:
symbols_to_delete.append(managed_symbol)
self.algorithm.Liquidate(managed_symbol.symbol)
if managed_symbol.long_flag: self.long_len -= 1
else: self.short_len -= 1
# Remove symbols from management.
for managed_symbol in symbols_to_delete:
self.symbols.remove(managed_symbol)
def LiquidateTicker(self, ticker):
symbol_to_delete = None
for managed_symbol in self.symbols:
if managed_symbol.symbol.Value == ticker:
self.algorithm.Liquidate(managed_symbol.symbol)
symbol_to_delete = managed_symbol
if managed_symbol.long_flag: self.long_len -= 1
else: self.short_len -= 1
break
if symbol_to_delete: self.symbols.remove(symbol_to_delete)
else: self.algorithm.Debug("Ticker is not held in portfolio!")
class ManagedSymbol():
def __init__(self, symbol, days_to_liquidate, long_flag):
self.symbol = symbol
self.days_to_liquidate = days_to_liquidate
self.long_flag = long_flag
class PortfolioOptimization(object):
def __init__(self, df_return, risk_free_rate, num_assets):
self.daily_return = df_return
self.risk_free_rate = risk_free_rate
self.n = num_assets # numbers of risk assets in portfolio
self.target_vol = 0.05
def annual_port_return(self, weights):
# calculate the annual return of portfolio
return np.sum(self.daily_return.mean() * weights) * 252
def annual_port_vol(self, weights):
# calculate the annual volatility of portfolio
return np.sqrt(np.dot(weights.T, np.dot(self.daily_return.cov() * 252, weights)))
def min_func(self, weights):
# method 1: maximize sharp ratio
return - self.annual_port_return(weights) / self.annual_port_vol(weights)
# method 2: maximize the return with target volatility
#return - self.annual_port_return(weights) / self.target_vol
def opt_portfolio(self):
# maximize the sharpe ratio to find the optimal weights
cons = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1})
bnds = tuple((0, 1) for x in range(2)) + tuple((0, 0.25) for x in range(self.n - 2))
opt = minimize(self.min_func, # object function
np.array(self.n * [1. / self.n]), # initial value
method='SLSQP', # optimization method
bounds=bnds, # bounds for variables
constraints=cons) # constraint conditions
opt_weights = opt['x']
return opt_weights