| Overall Statistics |
|
Total Trades 64571 Average Win 0.01% Average Loss -0.01% Compounding Annual Return 18.072% Drawdown 33.500% Expectancy 0.238 Net Profit 129.269% Sharpe Ratio 0.889 Probabilistic Sharpe Ratio 33.535% Loss Rate 44% Win Rate 56% Profit-Loss Ratio 1.23 Alpha 0.008 Beta 1.068 Annual Standard Deviation 0.187 Annual Variance 0.035 Information Ratio 0.384 Tracking Error 0.048 Treynor Ratio 0.156 Total Fees $76016.09 Estimated Strategy Capacity $350000.00 |
#
# Original File:
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect
# Corporation.
#
# Changes:
# The universe selection model is extended to take parameters as
# optional arguments.
# Ostirion.net Copyright 2021
# Hector Barrio - hbarrio@ostirion.net.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from QuantConnect.Data.UniverseSelection import *
from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel
from itertools import groupby
from math import ceil
from clr import AddReference
import numpy as np
from typing import List, Set, Tuple, Dict
AddReference("System")
AddReference("QuantConnect.Common")
AddReference("QuantConnect.Algorithm.Framework")
class FlexibleUniverseSelectionModel(FundamentalUniverseSelectionModel):
'''
Class representing a parametrically selected securities universe.
Attributes:
n_coarse (int): Number of securities in the coarse selection.
n_fine (int): Number of securities in fine selection.
age (int): Minimum time since IPO.
recent (int): Maximum time from IPO.
vol_lim (float): Minimum daily volume of each security.
min_price (float): Minimum price of each security.
max_price (float): Maximum price of each security.
period (str): "Month" or "Day". Recalculate the universe every period.
m_cap_lim (float): Minimum market cap of security to be considered.
markets (list[str]): Markets in which the security trades.
c_id (str): Code of the country of origin of securities.
from_top (bool): Take the top (True) or bottom (False) volume securities.
restrict_country (bool): Restrict the country of origin and market for securities.
verbose (bool): False for silent, True for announcing size and components.
'''
def __init__(self: None,
n_coarse: int=1000,
n_fine: int=500,
age: int=1250,
recent: int=-1,
vol_lim: int=0,
min_price: int=0,
max_price: float=np.Inf,
period: str='Month',
m_cap_lim: float=5e8,
markets: List[str]=["NYS", "NAS"],
c_id: str='USA',
from_top: bool=True,
restrict_country: bool=True,
verbose: bool=False,
filterFineData: bool=True,
universeSettings: UniverseSettings=None,
securityInitializer: SecurityInitializer=None) -> None:
super().__init__(filterFineData, universeSettings, securityInitializer)
# Parameter settings:
self.n_symbols_coarse = n_coarse
self.n_symbols_fine = n_fine
self.age = age
self.recent = recent
self.vol_lim = vol_lim
self.min_price = min_price
self.max_price = max_price
self.period = period
self.m_cap_lim = m_cap_lim
self.markets = markets
self.c_id = c_id
self.reverse = from_top
self.restrict_country = restrict_country
self.verbose = verbose
self.usd_vol = {}
self.last_month = -1
def SelectCoarse(self,
algorithm: QCAlgorithm,
coarse: CoarseFundamental) -> FineFundamental:
'''
Coarse unviverse selection method.
Args:
algorithm (QCAlgorithm): Current algorithm instance.
coarse (CoarseFundamental): QC Coarse universe object.
Returns:
fine (FineFundamental): QC fine universe object.
'''
if self.period == 'Month':
if algorithm.Time.month == self.last_month:
return Universe.Unchanged
elif self.period != 'Day':
algoithm.Log('Period not valid.. Choose "Day" or "Month". Defaulting to "Month".')
c = coarse
usd_vol = sorted([x for x in c if
x.HasFundamentalData and
x.Volume > self.vol_lim and
self.max_price > x.Price > self.min_price],
key=lambda x: x.DollarVolume,
reverse=self.reverse)[:self.n_symbols_coarse]
self.usd_vol = {x.Symbol: x.DollarVolume for x in usd_vol}
if len(self.usd_vol) == 0:
return Universe.Unchanged
return list(self.usd_vol.keys())
def SelectFine(self,
algorithm: QCAlgorithm,
fine: FineFundamental) -> FineFundamental:
'''
Coarse unviverse selection method.
Args:
algorithm (QCAlgorithm): Current algorithm instance.
fine (FineFundamental): QC fine universe object.
Returns:
new_universe (FineFundamental): QC fine universe object.
'''
f = fine
a = algorithm
sort_sector = sorted([x for x in f if
x.MarketCap > self.m_cap_lim],
key=lambda x: x.CompanyReference.IndustryTemplateCode)
count = len(sort_sector)
if count == 0:
return Universe.Unchanged
if self.recent != -1:
sort_sector = [x for x in sort_sector if
(a.Time -
x.SecurityReference.IPODate).days < self.recent]
else:
sort_sector = [x for x in sort_sector if
(a.Time -
x.SecurityReference.IPODate).days > self.age]
if self.restrict_country:
sort_sector = [x for x in sort_sector if
x.CompanyReference.CountryId == self.c_id and
x.CompanyReference.PrimaryExchangeID in self.markets]
self.last_month = a.Time.month
percent = self.n_symbols_fine / count
sort_usd_vol = []
for c, g in groupby(sort_sector,
lambda x: x.CompanyReference.IndustryTemplateCode):
y = sorted(g, key=lambda x: self.usd_vol[x.Symbol],
reverse=self.reverse)
c = ceil(len(y) * percent)
sort_usd_vol.extend(y[:c])
sort_usd_vol = sorted(sort_usd_vol,
key=lambda x: self.usd_vol[x.Symbol],
reverse=self.reverse)
new_universe = [x.Symbol for x in sort_usd_vol[:self.n_symbols_fine]]
if self.verbose:
for s in new_universe:
algorithm.Log('Adding: '+str(s.Symbol))
algorithm.Log('Universe members: ' + str(len(new_universe)))
return new_universeimport time
from datetime import date
from FlexibleUniverseSelectionModel import FlexibleUniverseSelectionModel as fsum
class MLVolatilityPredictor(QCAlgorithm):
def Initialize(self):
YEARS = 5
self.SetStartDate(datetime.today() - timedelta(days=YEARS*365))
self.SetEndDate(datetime.today())
self.SetCash(1000000)
self.SetBrokerageModel(BrokerageName.AlphaStreams)
res = Resolution.Hour
self.SetBenchmark("SPY")
self.AddUniverseSelection(fsum(n_fine=50))
self.UniverseSettings.Resolution = res
self.AddAlpha(UniverseBalancer())
self.SetExecution(ImmediateExecutionModel())
self.SetPortfolioConstruction(InsightWeightingPortfolioConstructionModel())
class UniverseBalancer(AlphaModel):
"""
"""
def __init__(self):
self.Name = 'Universe Balancer'
self.removed_symbols = False
def Update(self, algorithm, data):
insights = []
hour = algorithm.Time.hour == 10
minute = algorithm.Time.minute == 00
operate = hour and minute
if not operate:
return insights
t_delta = timedelta(days=22)
for s in data.keys():
if s in self.removed_symbols:
continue
if algorithm.Securities[s].Invested: continue
if s.Value == 'CHK': continue
insights.append(Insight(s, t_delta,
InsightType.Price, InsightDirection.Up, 0.02, 1,
self.Name, 1))
return insights
def OnSecuritiesChanged(self, algorithm, changes):
self.removed_symbols = [sec.Symbol for sec in changes.RemovedSecurities]