| Overall Statistics |
|
Total Orders 12 Average Win 0.03% Average Loss 0% Compounding Annual Return 1.860% Drawdown 0.300% Expectancy 0 Start Equity 1000000 End Equity 1002985 Net Profit 0.298% Sharpe Ratio -4.438 Sortino Ratio -3.2 Probabilistic Sharpe Ratio 57.374% Loss Rate 0% Win Rate 100% Profit-Loss Ratio 0 Alpha -0.043 Beta 0.046 Annual Standard Deviation 0.009 Annual Variance 0 Information Ratio -0.515 Tracking Error 0.104 Treynor Ratio -0.922 Total Fees $0.00 Estimated Strategy Capacity $1000.00 Lowest Capacity Asset SPXW 32OQC5DLYSW32|SPX 31 Portfolio Turnover 0.01% |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#region imports
from AlgorithmImports import *
#endregion
import pandas_market_calendars as mcal
from datetime import datetime, timedelta
class IndexOptionIronCondorAlgorithm(QCAlgorithm):
def initialize(self):
self.set_start_date(2025, 1, 1)
self.set_end_date(2025, 2, 28)
self.set_cash(1000000)
index = self.add_index("SPX", Resolution.MINUTE).symbol
option = self.add_index_option(index, "SPXW", Resolution.MINUTE)
option.set_filter(lambda x: x.weeklys_only().strikes(-50, 50).expiration(5, 18))
self.spxw = option.symbol
self.bb = self.bb(index, 10, 2, resolution=Resolution.DAILY)
self.warm_up_indicator(index, self.bb)
self.log(f"time_zone: {self.time_zone}")
self.time_logged = None
self.last_date = None
self.last_answer = False
def is_last_trading_day_of_week(self, date: Union[datetime, str]) -> bool:
date = datetime.strptime(date, '%Y-%m-%d') if isinstance(date, str) else date
if self.last_date and self.last_date == date.date():
return self.last_answer
self.last_date = date.date()
nyse = mcal.get_calendar('NYSE')
# Define the start and end of the week
start_of_week = date - timedelta(days=date.weekday())
end_of_week = start_of_week + timedelta(days=4)
# Get the NYSE schedule for the week
week_schedule = nyse.schedule(start_date=start_of_week.strftime('%Y-%m-%d'),
end_date=end_of_week.strftime('%Y-%m-%d'))
week_dates = week_schedule.index.strftime('%Y-%m-%d')
last_trading_day = week_dates[-1] if week_schedule.shape[0] > 0 else None
self.last_answer = date.strftime('%Y-%m-%d') == last_trading_day
return self.last_answer
def next_trading_day_of_week(self, date: Union[datetime, str]) -> bool:
date = datetime.strptime(date, '%Y-%m-%d') if isinstance(date, str) else date
nyse = mcal.get_calendar('NYSE')
# Define the start and end of the week
start_of_next_week = date + timedelta(days=7) - timedelta(days=date.weekday())
end_of_next_week = start_of_next_week + timedelta(days=4)
# Get the NYSE schedule for the week
week_schedule = nyse.schedule(start_date=start_of_next_week.strftime('%Y-%m-%d'),
end_date=end_of_next_week.strftime('%Y-%m-%d'))
week_dates = week_schedule.index.strftime('%Y-%m-%d')
last_trading_day = week_dates[-1] if week_schedule.shape[0] > 0 else None
return last_trading_day
def on_data(self, slice: Slice) -> None:
#if self.portfolio.invested: return
if not self.is_last_trading_day_of_week(self.Time):
#if not self.time_logged or self.time_logged and self.time_logged != self.Time.date():
# self.time_logged = self.Time.date()
# #self.log(f"on_data: {self.time_logged} is not a day to trade")
return
if not (self.Time.hour == 15 and self.Time.minute == 50):
return
#self.log(f"on_data: {self.Time}")
# Get the OptionChain
chain = slice.option_chains.get(self.spxw)
if not chain: return
# Get the closest expiry date
expiry = self.next_trading_day_of_week(self.Time) #min([x.expiry for x in chain])
#for x in chain:
# if x.right == OptionRight.PUT:
# self.log(f"{x}")
chain = [x for x in chain if x.expiry.strftime('%Y-%m-%d') == expiry]
# Separate the call and put contracts and sort by Strike to find OTM contracts
#calls = sorted([x for x in chain if x.right == OptionRight.CALL], key=lambda x: x.strike, reverse=True)
puts = sorted([x for x in chain if x.right == OptionRight.PUT], key=lambda x: x.strike)
#if len(calls) < 3 or len(puts) < 3: return
if len(puts) < 3: return
self.log(f"on_data: processing option {puts[3]}, Underlying: {puts[3].UnderlyingLastPrice} Next expiration date {self.next_trading_day_of_week(self.Time)}")
self.MarketOrder(puts[3].symbol, -1)
# Create combo order legs
'''
price = self.bb.price.current.value
quantity = 1
if price > self.bb.upper_band.current.value or price < self.bb.lower_band.current.value:
quantity = -1
legs = [
Leg.create(calls[0].symbol, quantity),
Leg.create(puts[0].symbol, quantity)
]
self.log(f"on_data: order {calls[0]}")
self.log(f" {puts[0]}")
self.log(f" {calls[2]}")
self.log(f" {puts[2]}")
#self.log(f" {*legs[1]}")
#self.log(f" {*legs[2]}")
#self.log(f" {*legs[3]}")
self.combo_market_order(legs, 10, asynchronous=True)
'''