| Overall Statistics |
|
Total Trades 2 Average Win 0% Average Loss 0% Compounding Annual Return 50.056% Drawdown 1.500% Expectancy 0 Net Profit 1.644% Sharpe Ratio 5.134 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 1.283 Beta -51.597 Annual Standard Deviation 0.073 Annual Variance 0.005 Information Ratio 4.865 Tracking Error 0.074 Treynor Ratio -0.007 Total Fees $29.00 |
import numpy as np
import pandas as pd
class BootCampTask(QCAlgorithm):
def Initialize(self):
self.SetCash(1000000)
# Start and end dates for the backtest.
self.SetStartDate(2017,6,1)
self.SetEndDate(2017,6,15)
# Manually Select Data
self.spy = self.AddEquity("SPY", Resolution.Minute)
self.iwm = self.AddEquity("IWM", Resolution.Minute)
# Schedule the rebalance function
self.Schedule.On(self.DateRules.EveryDay("SPY"),
self.TimeRules.AfterMarketOpen("SPY", 30),
Action(self.rebalance))
def OnData(self, data):
pass
def rebalance(self):
# Do something here
if not self.Securities["SPY"].Invested:
self.SetHoldings("SPY", 0.5)
if not self.Securities["IWM"].Invested:
self.SetHoldings("IWM", 0.5)
invested = [ x.Symbol.Value for x in self.Portfolio.Values if x.Invested ]
self.Log("Invested: " + str(len(invested)) + ': '+ str(invested))