| Overall Statistics |
|
Total Trades 5464 Average Win 0.30% Average Loss 0.00% Compounding Annual Return -4.871% Drawdown 4.800% Expectancy -0.841 Net Profit -4.675% Sharpe Ratio -1.176 Loss Rate 100% Win Rate 0% Profit-Loss Ratio 143.50 Alpha -0.034 Beta -0.023 Annual Standard Deviation 0.029 Annual Variance 0.001 Information Ratio -0.252 Tracking Error 0.138 Treynor Ratio 1.496 Total Fees $10108.40 |
# https://quantpedia.com/Screener/Details/100
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Data import SubscriptionDataSource
from QuantConnect.Algorithm import *
from QuantConnect.Python import PythonData, PythonQuandl
from sklearn import datasets, linear_model
from datetime import date, timedelta, datetime
from collections import deque
import statsmodels.api as sm
import decimal
import numpy as np
class TradeWtiBrentSpreadAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2018, 1, 1)
self.SetEndDate(2018, 12, 15)#datetime.now())
self.SetCash(1000000)
# import the custom data
'''self.AddData(WTI, "WTI", Resolution.Daily)
self.AddData(BRENT, "BRENT", Resolution.Daily)'''
self.es = "SCF/CME_ES1_ON"
self.AddData(QuandlFuture, self.es, Resolution.Daily)
self.nq = "SCF/CME_NQ1_ON"
self.AddData(QuandlFuture, self.nq, Resolution.Daily)
# Subscribe and set our expiry filter for the futures chain
futureES = self.AddFuture(Futures.Indices.SP500EMini)
futureES.SetFilter(timedelta(0), timedelta(90))
futureNQ = self.AddFuture(Futures.Indices.NASDAQ100EMini)
futureNQ.SetFilter(timedelta(0), timedelta(90))
benchmark = self.AddEquity("SPY");
self.SetBenchmark(benchmark.Symbol);
self.frontES = None
self.frontNQ = None
#hist = self.History(["WTI", "BRENT"], 400, Resolution.Daily)["value"].unstack(level=0).dropna()
#Create the EMA spread for the liquidate signal
'''self.wtiema = self.EMA("WTI", 7)
self.brentema = self.EMA("BRENT", 7)
self.wtibrentema = IndicatorExtensions.Minus(self.wtiema, self.brentema)
self.SpreadSMA = SimpleMovingAverage(13)#for WTI|BRENT'''
self.esema = self.EMA(self.es, 8)
self.nqema = self.EMA(self.nq, 8)
self.esnqema = IndicatorExtensions.Minus(self.nqema, self.esema)
self.esnqSMA = SimpleMovingAverage(13)
# Add the spread plot and mark the long/short spread point
spreadPlot = Chart("Spread Plot")
#spreadPlot.AddSeries(Series("Spread", SeriesType.Line, 0))
#spreadPlot.AddSeries(Series("Long Spread Trade", SeriesType.Scatter, 0))
#spreadPlot.AddSeries(Series("Short Spread Trade", SeriesType.Scatter, 0))
#spreadPlot.AddSeries(Series("Spread EMA", SeriesType.Line, 0))
#spreadPlot.AddSeries(Series("Spread SMA", SeriesType.Line, 0))
spreadPlot.AddSeries(Series("Spread2", SeriesType.Line, 0))
spreadPlot.AddSeries(Series("ESNQ EMA", SeriesType.Line, 0))
spreadPlot.AddSeries(Series("ESNQ SMA", SeriesType.Line, 0))
self.AddChart(spreadPlot)
self.SetWarmup(timedelta(100))
def OnData(self, data):
#self.Log("Warming Up")
if self.IsWarmingUp: return #for some reason this was stuck warming up...i added the time delta bit, see what happens next..
'''self.Log("checcking for data contains key wti brent")
if (data.ContainsKey("WTI") and data.ContainsKey("BRENT")):
self.SpreadSMA.Update(self.Time, data["WTI"].Price - data["BRENT"].Price)
if not self.SpreadSMA.IsReady: return'''
#self.Plot("Spread Plot", "Spread", data["WTI"].Price - data["BRENT"].Price)
#self.Log("checking for data contains key ES NQ")
if (data.ContainsKey("SCF/CME_NQ1_ON") and data.ContainsKey("SCF/CME_ES1_ON")):
#self.Log("checking the nasdaq sma and plotting spread")
self.esnqSMA.Update(self.Time, data["SCF/CME_NQ1_ON"].Price - data["SCF/CME_ES1_ON"].Price)
self.Plot("Spread Plot", "Spread2", data["SCF/CME_NQ1_ON"].Price - data["SCF/CME_ES1_ON"].Price)
#self.Log("checking if ES NQ SMA is ready")
if not self.esnqSMA.IsReady: return
#self.Plot("Spread Plot", "Spread EMA", self.wtibrentema.Current.Value)
#self.Plot("Spread Plot", "Spread SMA", self.SpreadSMA.Current.Value)
tolerance = decimal.Decimal(0.005);
#pread = self.Securities["WTI"].Price - self.Securities["BRENT"].Price
spread2 = self.Securities[self.nq].Price - self.Securities[self.es].Price
'''
if spread > self.SpreadSMA.Current.Value and not (self.Portfolio["WTI"].IsShort and self.Portfolio["BRENT"].IsLong):
self.SetHoldings("WTI", -0.2)
self.SetHoldings("BRENT", 0.2)
#self.Plot("Spread Plot", "Long Spread Trade", data["WTI"].Price - data["BRENT"].Price)
#self.Debug()
elif spread < self.SpreadSMA.Current.Value and not (self.Portfolio["WTI"].IsLong and self.Portfolio["BRENT"].IsShort):
self.SetHoldings("WTI", 0.2)
self.SetHoldings("BRENT", -0.2)
#self.Plot("Spread Plot", "Short Spread Trade", data["WTI"].Price - data["BRENT"].Price)
if self.Portfolio["WTI"].IsShort and self.Portfolio["BRENT"].IsLong and spread < self.wtibrentema.Current.Value:
self.Liquidate()
#self.Debug("the ema of wti/brent is " + str(self.wtibrentema.Current.Value))
if self.Portfolio["WTI"].IsLong and self.Portfolio["BRENT"].IsShort and spread > self.wtibrentema.Current.Value:
self.Liquidate()'''
#for kvp in data.Bars:
# self.Debug("---> OnData: {}, {}, {}" .format(self.Time, kvp.Key.Value, kvp.Value.Close));
self.Plot("Spread Plot", "ESNQ SMA", self.esnqSMA.Current.Value)
self.Plot("Spread Plot", "ESNQ EMA", self.esnqema.Current.Value)
for chain in data.FutureChains:
if chain.Key.Value == Futures.Indices.SP500EMini:
if self.frontES is None :# Get contracts expiring no earlier than in 90 days
contracts = list(filter(lambda x: x.Expiry > self.Time + timedelta(10), chain.Value))
# if there is any contract, trade the front contract
if len(contracts) == 0: continue
self.frontES = sorted(contracts, key = lambda x: x.Expiry, reverse=True)[0]
if chain.Key.Value == Futures.Indices.NASDAQ100EMini:
if self.frontNQ is None:
# Get contracts expiring no earlier than in 90 days
contracts = list(filter(lambda x: x.Expiry > self.Time + timedelta(10), chain.Value))
# if there is any contract, trade the front contract
if len(contracts) == 0: continue
self.frontNQ = sorted(contracts, key = lambda x: x.Expiry, reverse=True)[0]
#self.Debug("self.frontES is " + str(self.frontES))
#self.Debug("self.frontNQ is " + str(self.frontNQ))
if self.frontES and self.frontNQ:
#self.Log(str(spread2) + " is spread2 and " + str(self.esnqSMA.Current.Value) + " is ESNQSimpleMovingAverage")
if spread2 > self.esnqSMA.Current.Value * (1 + tolerance) and not (self.Portfolio[self.frontNQ.Symbol].IsShort and self.Portfolio[self.frontES.Symbol].IsLong):
#self.Log(f'frontNQ is short and frontES is long: {self.Portfolio[self.frontNQ.Symbol].IsShort and self.Portfolio[self.frontES.Symbol].IsLong}')
self.SetHoldings(self.frontNQ.Symbol , -0.2)
self.SetHoldings(self.frontES.Symbol , 0.2)
#self.Log("Absolute HOldings cost is " + str(self.Portfolio.TotalAbsoluteHoldingsCost))
'''if (data.ContainsKey("SCF/CME_NQ1_ON") and data.ContainsKey("SCF/CME_ES1_ON")):
self.Plot("Spread Plot", "Long Spread Trade", data[self.nq].Price - data[self.es].Price)'''
elif spread2 < self.esnqSMA.Current.Value * (1 - tolerance) and not (self.Portfolio[self.frontNQ.Symbol].IsLong and self.Portfolio[self.frontES.Symbol].IsShort):
#self.Log(f'frontNQ is short and frontES is long: {self.Portfolio[self.frontNQ.Symbol].IsShort and self.Portfolio[self.frontES.Symbol].IsLong}')
self.SetHoldings(self.frontNQ.Symbol , 0.2)
self.SetHoldings(self.frontES.Symbol , -0.2)
#self.Log("Absolute HOldings cost is " + str(self.Portfolio.TotalAbsoluteHoldingsCost))
'''if (data.ContainsKey("SCF/CME_NQ1_ON") and data.ContainsKey("SCF/CME_ES1_ON")):
self.Plot("Spread Plot", "Short Spread Trade", data[self.nq].Price - data[self.es].Price)'''
if self.Portfolio[self.frontNQ.Symbol].IsShort and self.Portfolio[self.frontES.Symbol].IsLong and spread2 < self.esnqema.Current.Value:
#self.Log(f'Is it time to Liquidate?: {self.Portfolio[self.frontNQ.Symbol].IsShort and self.Portfolio[self.frontES.Symbol].IsLong}')
self.Liquidate(self.frontES.Symbol)
self.Liquidate(self.frontNQ.Symbol)
#self.Log("Liquidated")
if self.Portfolio[self.frontNQ.Symbol].IsLong and self.Portfolio[self.frontES.Symbol].IsShort and spread2 > self.esnqema.Current.Value:
#self.Log(f'Is it time to Liquidate?: {self.Portfolio[self.frontNQ.Symbol].IsShort and self.Portfolio[self.frontES.Symbol].IsLong}')
self.Liquidate(self.frontES.Symbol)
self.Liquidate(self.frontNQ.Symbol)
#self.Log("Liquidated")
'''def OnOrderEvent(self, orderEvent):
self.Log(str(orderEvent))'''
class QuandlFuture(PythonQuandl):
'''Custom quandl data type for setting customized value column name. Value column is used for the primary trading calculations and charting.'''
def __init__(self):
# Define ValueColumnName: cannot be None, Empty or non-existant column name
# If ValueColumnName is "Close", do not use PythonQuandl, use Quandl:
# self.AddData[QuandlFuture](self.crude, Resolution.Daily)
self.ValueColumnName = "Settle"
class WTI(PythonData):
"Class to import WTI Spot Price(Dollars per Barrel) data from Dropbox"
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("https://www.dropbox.com/s/jpie3z6j0stp97d/wti-crude-oil-prices-10-year-daily.csv?dl=1", SubscriptionTransportMedium.RemoteFile)
def Reader(self, config, line, date, isLiveMode):
if not (line.strip() and line[1].isdigit()): return None
index = WTI()
index.Symbol = config.Symbol
try:
# Example File Format: (Data starts from 08/11/2008)
# date value
# 8/11/08 114.44
data = line.split(',')
index.Time = datetime.strptime(data[0], "%Y-%m-%d")
index.Value = Decimal(data[1])
except:
return None
return index
class BRENT(PythonData):
"Class to import BRENT Spot Price(Dollars per Barrel) data from Dropbox"
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("https://www.dropbox.com/s/w380c4n7xjmdqxl/brent-crude-oil-prices-10-year-daily.csv?dl=1", SubscriptionTransportMedium.RemoteFile)
def Reader(self, config, line, date, isLiveMode):
if not (line.strip() and line[1].isdigit()): return None
index = BRENT()
index.Symbol = config.Symbol
try:
# Example File Format: (Data starts from 08/11/2008)
# date value
# 8/11/08 110.54
data = line.split(',')
index.Time = datetime.strptime(data[0], "%Y-%m-%d")
index.Value = Decimal(data[1])
except:
return None
return index