| Overall Statistics |
|
Total Orders 125 Average Win 22.26% Average Loss -6.87% Compounding Annual Return 92.212% Drawdown 45.800% Expectancy 1.395 Start Equity 10000 End Equity 495042.85 Net Profit 4850.429% Sharpe Ratio 1.538 Sortino Ratio 1.43 Probabilistic Sharpe Ratio 72.325% Loss Rate 44% Win Rate 56% Profit-Loss Ratio 3.24 Alpha 0.652 Beta 0.666 Annual Standard Deviation 0.469 Annual Variance 0.22 Information Ratio 1.345 Tracking Error 0.459 Treynor Ratio 1.082 Total Fees $555.92 Estimated Strategy Capacity $240000000.00 Lowest Capacity Asset MSTR RBGP9S2961YD Portfolio Turnover 5.70% |
from AlgorithmImports import *
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import numpy as np
import pandas as pd
class MLTradingAlgorithm(QCAlgorithm):
def Initialize(self):
# 1. Algorithm Parameters
self.SetStartDate(2019, 1, 1) # Start date
self.SetEndDate(2024, 12, 31) # End date
self.SetCash(10000) # Initial capital
# 2. Add MSTR Equity
self.symbol = self.AddEquity("MSTR", Resolution.Daily).Symbol
# 3. RollingWindow to Store 200 Days of TradeBar Data
self.data = RollingWindow[TradeBar](200)
# 4. Warm-Up Period
self.SetWarmUp(200)
# 5. Initialize Linear Regression Model
self.model = LinearRegression()
self.training_count = 0
self.is_model_trained = False # Tracks if the model is trained
# 6. Schedule Training Every Monday at 10:00 AM
self.Schedule.On(self.DateRules.Every(DayOfWeek.Monday),
self.TimeRules.At(10, 0),
self.TrainModel)
def OnData(self, data):
# 7. Ensure Data Exists
if not data.ContainsKey(self.symbol):
return
trade_bar = data[self.symbol]
if trade_bar is None:
return
# 8. Add TradeBar to Rolling Window
self.data.Add(trade_bar)
# 9. Check if RollingWindow is Ready
if not self.data.IsReady or self.data.Count < 200:
return
# Ensure Model is Fitted Before Using It
if not self.is_model_trained:
self.Debug("Model is not trained yet. Skipping prediction.")
return
# 10. Extract Features for Prediction
df = self.GetFeatureDataFrame()
if df is None or len(df) < 1:
return
latest_features = df.iloc[-1, :-1].values.reshape(1, -1)
# 11. Make Predictions (Convert Continuous Output to Binary)
try:
prediction_value = self.model.predict(latest_features)[0]
# Threshold at 0.5 => If > 0.5 → Buy; Otherwise → Sell
prediction = 1 if prediction_value > 0.5 else 0
except:
self.Debug("Error: Model prediction failed.")
return
# Trading Logic
holdings = self.Portfolio[self.symbol].Quantity
# Buy if prediction = 1 and not currently invested
if prediction == 1 and holdings <= 0:
self.SetHoldings(self.symbol, 1)
# Sell if prediction = 0 and currently invested
elif prediction == 0 and holdings > 0:
self.Liquidate(self.symbol)
def TrainModel(self):
# 12. Prepare Training Data
df = self.GetFeatureDataFrame()
if df is None or len(df) < 50: # Require enough data to train
self.Debug("Insufficient data for training.")
return
# 13. Split Data
X = df.iloc[:, :-1] # Features
y = df.iloc[:, -1] # Target (0 or 1)
# Use chronological split (no shuffle)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, shuffle=False, random_state=42
)
# 14. Train Linear Regression Model
self.model.fit(X_train, y_train)
self.is_model_trained = True
# 15. Evaluate Model Performance (Convert Regression Output → Binary for Accuracy)
y_train_pred = self.model.predict(X_train)
y_train_pred_binary = [1 if val > 0.5 else 0 for val in y_train_pred]
train_accuracy = accuracy_score(y_train, y_train_pred_binary)
y_test_pred = self.model.predict(X_test)
y_test_pred_binary = [1 if val > 0.5 else 0 for val in y_test_pred]
test_accuracy = accuracy_score(y_test, y_test_pred_binary)
self.training_count += 1
self.Debug(f"Training #{self.training_count}: "
f"Train Accuracy: {train_accuracy:.2%}, "
f"Test Accuracy: {test_accuracy:.2%}")
def GetFeatureDataFrame(self):
# Wait until we have 200 data points in the rolling window
if self.data.Count < 200:
return None
# Convert rolling window data (TradeBars) to a DataFrame
close_prices = [bar.Close for bar in self.data]
df = pd.DataFrame(close_prices, columns=["Close"])
# Feature Engineering
df["SMA_10"] = df["Close"].rolling(window=10).mean()
df["SMA_50"] = df["Close"].rolling(window=50).mean()
# RSI Calculation
delta = df["Close"].diff()
gain = (delta.where(delta > 0, 0)).rolling(14).mean()
loss = (-delta.where(delta < 0, 0)).rolling(14).mean()
rs = gain / loss
df["RSI"] = 100 - (100 / (1 + rs))
# MACD Calculation
df["MACD"] = df["Close"].ewm(span=12, adjust=False).mean() - df["Close"].ewm(span=26, adjust=False).mean()
df["MACD_Signal"] = df["MACD"].ewm(span=9, adjust=False).mean()
# Historical Volatility (HV_30)
df["HV_30"] = df["Close"].pct_change().rolling(window=30).std() * np.sqrt(252)
# Define Target: 1 if next day's Close > today's Close, else 0
df["Target"] = (df["Close"].shift(-1) > df["Close"]).astype(int)
# Remove rows with NaN values from rolling calculations
df.dropna(inplace=True)
return df