| Overall Statistics |
|
Total Trades 265 Average Win 2.95% Average Loss -1.57% Compounding Annual Return 15.234% Drawdown 26.600% Expectancy 0.854 Net Profit 348.976% Sharpe Ratio 0.794 Probabilistic Sharpe Ratio 17.100% Loss Rate 36% Win Rate 64% Profit-Loss Ratio 1.88 Alpha 0.091 Beta 0.227 Annual Standard Deviation 0.144 Annual Variance 0.021 Information Ratio 0.052 Tracking Error 0.177 Treynor Ratio 0.504 Total Fees $498.24 Estimated Strategy Capacity $390000.00 Lowest Capacity Asset SPDN WB6RS4QDXLK5 |
#region imports
from AlgorithmImports import *
#endregion
# Import packages
import numpy as np
import pandas as pd
import scipy as sc
import pickle
from scipy import stats
class InOut(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2012, 1, 1) # Set Start Date
self.cap = 10000
self.SetCash(self.cap) # Set Strategy Cash
res = Resolution.Hour
# Holdings
### 'Out' holdings and weights
self.HLD_OUT = {self.AddEquity('TLT', res).Symbol: 1}
### 'In' holdings and weights
self.HLD_IN = {self.AddEquity('QQQ', res).Symbol: 1}
# Market and list of signals based on ETFs
self.MRKT = self.AddEquity('QQQ', res).Symbol # market; QQQ
self.PRDC = self.AddEquity('XLI', res).Symbol # production (industrials)
self.METL = self.AddEquity('DBB', res).Symbol # input prices (metals)
self.NRES = self.AddEquity('IGE', res).Symbol # input prices (natural res)
self.DEBT = self.AddEquity('SHY', res).Symbol # cost of debt (bond yield)
self.USDX = self.AddEquity('UUP', res).Symbol # safe haven (USD)
self.GOLD = self.AddEquity('GLD', res).Symbol # gold
self.SLVA = self.AddEquity('SLV', res).Symbol # vs silver
self.UTIL = self.AddEquity('XLU', res).Symbol # utilities
self.INDU = self.PRDC
##
self.QQQ = self.AddEquity('QQQ', Resolution.Daily).Symbol
self.VEU = self.AddEquity('VEU', Resolution.Daily).Symbol
self.TLT = self.AddEquity('TLT', Resolution.Daily).Symbol
self.SPDN = self.AddEquity('SPDN', Resolution.Daily).Symbol
self.IEF = self.AddEquity('IEF', Resolution.Daily).Symbol
#self.QQQ = self.AddData(QQQ, "QQQ", Resolution.Daily).Symbol
#self.VEU = self.AddData(VEU, "VEU", Resolution.Daily).Symbol
#self.TLT = self.AddData(TLT, "TLT", Resolution.Daily).Symbol
#self.SPDN = self.AddData(SPDN, "SPDN", Resolution.Daily).Symbol
#self.IEF = self.AddData(IEF, "IEF", Resolution.Daily).Symbol
self.indicator = self.AddData(MOMENTUM, "MOMENTUM", Resolution.Daily).Symbol
self.SetWarmUp(timedelta(126))
#self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin)
self.SIGNALS = [self.PRDC, self.METL, self.NRES, self.USDX, self.DEBT, self.MRKT]
self.FORPAIRS = [self.GOLD, self.SLVA, self.UTIL, self.INDU]
self.pairlist = ['G_S', 'U_I']
self.basket_in = ['QQQ','VEU']
self.riskassetsmomentum = {}
self.basket_out = ['TLT','IEF','SPDN']
self.safehavensmomentum = {}
self.position = -1
for ticker in self.basket_in:
self.AddEquity(ticker, res)
self.Securities[ticker].SetFeeModel(CustomFeeModel())
self.riskassetsmomentum[ticker] = CombinedMomentum(self, ticker)
for ticker in self.basket_out:
self.AddEquity(ticker, res)
self.Securities[ticker].SetFeeModel(CustomFeeModel())
self.safehavensmomentum[ticker] = CombinedMomentum(self, ticker)
# Initialize constants and variables
self.INI_WAIT_DAYS, self.lookback, self.be_in, self.dcount, self.outday, self.portf_val = [5, 252*5, [1], 0, 0, [self.cap]]
# Symbols for charts
self.SPY = self.AddEquity('SPY', res).Symbol
self.QQQ = self.MRKT
symbols = list(set(self.SIGNALS + [self.MRKT] + self.FORPAIRS + list(self.HLD_OUT.keys()) + list(self.HLD_IN.keys()) + [self.SPY] + [self.QQQ]))
for symbol in symbols:
self.consolidator = TradeBarConsolidator(timedelta(days=1))
self.consolidator.DataConsolidated += self.consolidation_handler
self.SubscriptionManager.AddConsolidator(symbol, self.consolidator)
# Warm up history
self.history = self.History(symbols, self.lookback, Resolution.Daily)
if self.history.empty or 'close' not in self.history.columns:
return
self.history = self.history['close'].unstack(level=0).dropna()
self.update_history_shift()
# Benchmarks for charts
self.benchmarks = [self.history[self.SPY].iloc[-2], self.history[self.QQQ].iloc[-2]]
def shiftAssets(self, target):
if not (self.Portfolio[target].Invested):
for symbol in self.Portfolio.Keys:
self.Liquidate(symbol)
if not self.Portfolio.Invested:
self.SetHoldings(target, 1)
def consolidation_handler(self, sender, consolidated):
self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close
self.history = self.history.iloc[-self.lookback:]
self.update_history_shift()
def update_history_shift(self):
self.history_shift = self.history.rolling(11, center=True).mean().shift(60)
def inout_check(self):
if self.history.empty: return
# Load saved dcount and outday (for live interruptions):
if (self.dcount==0) and (self.outday==0) and (self.ObjectStore.ContainsKey('OS_counts')):
OS_counts = self.ObjectStore.ReadBytes('OS_counts')
OS_counts = pickle.loads(bytearray(OS_counts))
self.dcount, self.outday = [OS_counts['dcount'], OS_counts['outday']]
# Returns sample to detect extreme observations
returns_sample = (self.history / self.history_shift - 1)
# Reverse code USDX: sort largest changes to bottom
returns_sample[self.USDX] = returns_sample[self.USDX] * (-1)
# For pairs, take returns differential, reverse coded
returns_sample['G_S'] = -(returns_sample[self.GOLD] - returns_sample[self.SLVA])
returns_sample['U_I'] = -(returns_sample[self.UTIL] - returns_sample[self.INDU])
# Extreme observations; statistical significance = 5%
extreme_b = returns_sample.iloc[-1] < np.nanpercentile(returns_sample, 5, axis=0)
# Re-assess/disambiguate double-edged signals
abovemedian = returns_sample.iloc[-1] > np.nanmedian(returns_sample, axis=0)
### Interest rate expectations (cost of debt) may increase because the economic outlook improves (showing in rising input prices) = actually not a negative signal
extreme_b.loc[self.DEBT] = np.where((extreme_b.loc[self.DEBT].any()) & (abovemedian[[self.METL, self.NRES]].any()), False, extreme_b.loc[self.DEBT])
# Determine whether 'in' or 'out' of the market
if (extreme_b[self.SIGNALS + self.pairlist]).any():
self.be_in.append(0)
self.outday = self.dcount
if self.dcount >= self.outday + self.INI_WAIT_DAYS:
self.be_in.append(1)
current_portfolio = self.Portfolio.Keys
# Swap to 'out' assets if applicable
topriskassets = sorted(self.riskassetsmomentum.items(), key=lambda x: x[1].getValue(), reverse=True)
topsafehavens = sorted(self.safehavensmomentum.items(), key=lambda x: x[1].getValue(), reverse=True)
if not self.be_in[-1]:
if self.position == -1 or self.position == 1:
if not (self.Portfolio[topsafehavens[0][0]].Invested):
self.Liquidate()
self.SetHoldings(topsafehavens[0][0], 1)
self.position = 0
elif self.be_in[-1]:
if self.position == -1 or self.position == 0:
if not (self.Portfolio[topriskassets[0][0]].Invested):
self.Liquidate()
self.SetHoldings(topriskassets[0][0], 1)
self.position = 1
self.charts(extreme_b)
self.dcount += 1
# Save data: day counts from live trading for interruptions (note: backtest saves data at the end so that it's available for live trading).
if self.LiveMode: self.SaveData_Counts()
def OnData(self, data):
if self.IsWarmingUp: return
if (self.Time.year <= 2016) :
if data.ContainsKey(self.indicator):
ticker = data[self.indicator].GetProperty('Indicator')
if (ticker =="VEU"):
self.Securities["VEU"].SetFeeModel(CustomFeeModel())
self.shiftAssets(self.VEU)
self.be_in.append(1)
elif (ticker =="QQQ"):
self.Securities["QQQ"].SetFeeModel(CustomFeeModel())
self.shiftAssets(self.QQQ)
self.be_in.append(1)
elif (ticker =="TLT"):
self.Securities["TLT"].SetFeeModel(CustomFeeModel())
self.shiftAssets(self.TLT)
self.be_in.append(0)
elif (ticker =="IEF"):
self.Securities["IEF"].SetFeeModel(CustomFeeModel())
self.shiftAssets(self.IEF)
self.be_in.append(0)
elif (self.Time.year <= 2021) :
if data.ContainsKey(self.indicator):
ticker = data[self.indicator].GetProperty('Indicator')
if (ticker =="VEU"):
self.Securities["VEU"].SetFeeModel(CustomFeeModel())
self.shiftAssets(self.VEU)
self.be_in.append(1)
elif (ticker =="QQQ"):
self.Securities["QQQ"].SetFeeModel(CustomFeeModel())
self.shiftAssets(self.QQQ)
self.be_in.append(1)
elif (ticker =="TLT"):
self.Securities["TLT"].SetFeeModel(CustomFeeModel())
self.shiftAssets(self.TLT)
self.be_in.append(0)
elif (ticker =="IEF"):
self.Securities["IEF"].SetFeeModel(CustomFeeModel())
self.shiftAssets(self.IEF)
self.be_in.append(0)
elif (ticker =="SPDN"):
self.Securities["SPDN"].SetFeeModel(CustomFeeModel())
self.shiftAssets(self.SPDN)
self.be_in.append(0)
elif (self.Time.year == 2022 and self.Time.month <= 3):
if data.ContainsKey(self.indicator):
ticker = data[self.indicator].GetProperty('Indicator')
if (ticker =="VEU"):
self.Securities["VEU"].SetFeeModel(CustomFeeModel())
self.shiftAssets(self.VEU)
self.be_in.append(1)
elif (ticker =="QQQ"):
self.Securities["QQQ"].SetFeeModel(CustomFeeModel())
self.shiftAssets(self.QQQ)
self.be_in.append(1)
elif (ticker =="TLT"):
self.Securities["TLT"].SetFeeModel(CustomFeeModel())
self.shiftAssets(self.TLT)
self.be_in.append(0)
elif (ticker =="IEF"):
self.Securities["IEF"].SetFeeModel(CustomFeeModel())
self.shiftAssets(self.IEF)
self.be_in.append(0)
elif (ticker =="SPDN"):
self.Securities["SPDN"].SetFeeModel(CustomFeeModel())
self.shiftAssets(self.SPDN)
self.be_in.append(0)
elif (self.Time.hour == 15):
self.inout_check()
def charts(self, extreme_b):
# Market comparisons
spy_perf = self.history[self.SPY].iloc[-1] / self.benchmarks[0] * self.cap
qqq_perf = self.history[self.QQQ].iloc[-1] / self.benchmarks[1] * self.cap
#self.Plot('Strategy Equity', 'SPY', spy_perf)
#self.Plot('Strategy Equity', 'QQQ', qqq_perf)
# Signals
self.Plot("In Out", "in_market", self.be_in[-1])
#self.Plot("Signals", "PRDC", int(extreme_b[self.SIGNALS + self.pairlist][0]))
#self.Plot("Signals", "METL", int(extreme_b[self.SIGNALS + self.pairlist][1]))
#self.Plot("Signals", "NRES", int(extreme_b[self.SIGNALS + self.pairlist][2]))
#self.Plot("Signals", "USDX", int(extreme_b[self.SIGNALS + self.pairlist][3]))
#self.Plot("Signals", "DEBT", int(extreme_b[self.SIGNALS + self.pairlist][4]))
#self.Plot("Signals", "G_S", int(extreme_b[self.SIGNALS + self.pairlist][5]))
#self.Plot("Signals", "U_I", int(extreme_b[self.SIGNALS + self.pairlist][6]))
self.Plot("QQQ", "Held", self.Portfolio["QQQ"].Quantity)
self.Plot("VEU", "Held", self.Portfolio["VEU"].Quantity)
self.Plot("TLT", "Held", self.Portfolio["TLT"].Quantity)
self.Plot("IEF", "Held", self.Portfolio["IEF"].Quantity)
def trade(self, weight_by_sec):
# sort: execute largest sells first, largest buys last
hold_wt = {k: (self.Portfolio[k].Quantity*self.Portfolio[k].Price)/self.Portfolio.TotalPortfolioValue for k in self.Portfolio.Keys}
order_wt = {k: weight_by_sec[k] - hold_wt.get(k, 0) for k in weight_by_sec}
weight_by_sec = {k: weight_by_sec[k] for k in dict(sorted(order_wt.items(), key=lambda item: item[1]))}
for sec, weight in weight_by_sec.items():
# Check that we have data in the algorithm to process a trade
if not self.CurrentSlice.ContainsKey(sec) or self.CurrentSlice[sec] is None:
continue
# Only trade if holdings fundamentally change
cond1 = (weight==0) and self.Portfolio[sec].IsLong
cond2 = (weight>0) and not self.Portfolio[sec].Invested
if cond1 or cond2:
self.SetHoldings(sec, weight)
def SaveData_Counts(self):
counts = {"dcount": self.dcount, "outday": self.outday}
self.ObjectStore.SaveBytes('OS_counts', pickle.dumps(counts))
class CombinedMomentum():
def __init__(self, algo, symbol):
self.one = algo.MOMP(symbol, 21, Resolution.Daily)
self.three = algo.MOMP(symbol, 63, Resolution.Daily)
self.six = algo.MOMP(symbol, 126, Resolution.Daily)
def getValue(self):
value = (self.one.Current.Value + self.three.Current.Value + self.six.Current.Value) / 3
return value
class MOMENTUM(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("https://www.dropbox.com/s/c7dh6xdc55i9mmq/Indicator_SHY_XLI_with%20VEU.csv?dl=1", SubscriptionTransportMedium.RemoteFile)
def Reader(self, config, line, date, isLive):
if not (line.strip() and line[0].isdigit()):
return None
index = MOMENTUM()
index.Symbol = config.Symbol
data = line.split(',')
index.Time = datetime.strptime(data[0], "%Y-%m-%d")
index.EndTime = index.Time + timedelta(days=1)
index.SetProperty("Indicator", str(data[1]))
return index
class CustomFeeModel:
def GetOrderFee(self, parameters):
self.trading_fee = 0.005 #Set fee per trade
fee = parameters.Order.AbsoluteQuantity* self.trading_fee
return OrderFee(CashAmount(fee, 'USD'))