| Overall Statistics |
|
Total Trades 117 Average Win 19.78% Average Loss -8.27% Compounding Annual Return 62.047% Drawdown 49.900% Expectancy 1.399 Net Profit 18876.138% Sharpe Ratio 1.78 Probabilistic Sharpe Ratio 84.766% Loss Rate 29% Win Rate 71% Profit-Loss Ratio 2.39 Alpha 0.804 Beta -0.1 Annual Standard Deviation 0.443 Annual Variance 0.196 Information Ratio 1.321 Tracking Error 0.482 Treynor Ratio -7.86 Total Fees $2969.20 |
# self.wt[self.IEF] = 0
# self.wt[self.IEF] = 0
"""
Based on 'In & Out' strategy by Peter Guenther 4 Oct 2020
expanded/inspired by Tentor Testivis, Dan Whitnable (Quantopian), Vladimir, and Thomas Chang.
https://www.quantopian.com/posts/new-strategy-in-and-out
https://www.quantconnect.com/forum/discussion/9597/the-in-amp-out-strategy-continued-from-quantopian/p1
"""
# Import packages
import numpy as np
import pandas as pd
import scipy as sc
class InOut(QCAlgorithm):
def Initialize(self):
self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Cash)
self.DefaultOrderProperties = InteractiveBrokersOrderProperties()
self.DefaultOrderProperties.FaGroup = "TestGroupEQ"
self.DefaultOrderProperties.FaMethod = "EqualQuantity"
self.SetWarmup(200)
self.SetStartDate(2010, 1, 1) # Set Start Date
self.SetCash(5000) # Set Strategy Cash
self.UniverseSettings.Resolution = Resolution.Daily
res = Resolution.Minute
self.signals = []
# Feed-in constants
self.INI_WAIT_DAYS = 15 # out for 3 trading weeks
# Holdings
### 'Out' holdings and weights
self.TLT = self.AddEquity('TMF', res).Symbol
# self.IEF = self.AddEquity('TYD', res).Symbol
self.HLD_OUT = {self.TLT: 1}
### 'In' holdings and weights (static stock selection strategy)
self.STKS = self.AddEquity('TQQQ', res).Symbol
self.HLD_IN = {self.STKS: 1}
### combined holdings dictionary
self.wt = {**self.HLD_IN, **self.HLD_OUT}
# self.wt = {self.STKS: 1, self.SPDN:0}
# Market and list of signals based on ETFs
self.MRKT = self.AddEquity('SPY', res).Symbol # market
self.PRDC = self.AddEquity('XLI', res).Symbol # production (industrials)
self.METL = self.AddEquity('DBB', res).Symbol # input prices (metals)
self.NRES = self.AddEquity('IGE', res).Symbol # input prices (natural res)
self.DEBT = self.AddEquity('SHY', res).Symbol # cost of debt (bond yield)
self.USDX = self.AddEquity('UUP', res).Symbol # safe haven (USD)
self.GOLD = self.AddEquity('GLD', res).Symbol # gold
self.SLVA = self.AddEquity('SLV', res).Symbol # VS silver
self.UTIL = self.AddEquity('XLU', res).Symbol # utilities
self.INDU = self.PRDC # vs industrials
self.SHCU = self.AddEquity('FXF', res).Symbol # safe haven currency (CHF)
self.RICU = self.AddEquity('FXA', res).Symbol # vs risk currency (AUD)
self.FORPAIRS = [self.GOLD, self.SLVA, self.UTIL, self.SHCU, self.RICU]
self.SIGNALS = [self.PRDC, self.METL, self.NRES, self.DEBT, self.USDX]
# Initialize variables
## 'In'/'out' indicator
self.be_in = True
## Day count variables
self.dcount = 0 # count of total days since start
self.outday = 0 # dcount when self.be_in=0
## Flexi wait days
self.WDadjvar = self.INI_WAIT_DAYS
self.Schedule.On(
self.DateRules.EveryDay(),
self.TimeRules.AfterMarketOpen('SPY', 1),
self.calculateSignal
)
self.Schedule.On(
self.DateRules.EveryDay(),
self.TimeRules.AfterMarketOpen('SPY', 120),
self.rebalance_when_out_of_the_market
)
self.Schedule.On(
self.DateRules.WeekEnd(),
self.TimeRules.AfterMarketOpen('SPY', 120),
self.rebalance_when_in_the_market
)
def calculateSignal(self):
# Returns sample to detect extreme observations
hist = self.History(
self.SIGNALS + [self.MRKT] + self.FORPAIRS, 252, Resolution.Daily)['close'].unstack(level=0).dropna()
hist_shift = hist.apply(lambda x: (x.shift(65) + x.shift(64) + x.shift(63) + x.shift(62) + x.shift(
61) + x.shift(60) + x.shift(59) + x.shift(58) + x.shift(57) + x.shift(56) + x.shift(55)) / 11)
returns_sample = (hist / hist_shift - 1)
# Reverse code USDX: sort largest changes to bottom
returns_sample[self.USDX] = returns_sample[self.USDX] * (-1)
# For pairs, take returns differential, reverse coded
returns_sample['G_S'] = -(returns_sample[self.GOLD] - returns_sample[self.SLVA])
returns_sample['U_I'] = -(returns_sample[self.UTIL] - returns_sample[self.INDU])
returns_sample['C_A'] = -(returns_sample[self.SHCU] - returns_sample[self.RICU])
self.pairlist = ['G_S', 'U_I', 'C_A']
# Extreme observations; statist. significance = 1%
pctl_b = np.nanpercentile(returns_sample, 1, axis=0)
extreme_b = returns_sample.iloc[-1] < pctl_b
# Determine waitdays empirically via safe haven excess returns, 50% decay
self.WDadjvar = int(
max(0.50 * self.WDadjvar,
self.INI_WAIT_DAYS * max(1,
np.where((returns_sample[self.GOLD].iloc[-1]>0) & (returns_sample[self.SLVA].iloc[-1]<0) & (returns_sample[self.SLVA].iloc[-2]>0), self.INI_WAIT_DAYS, 1),
np.where((returns_sample[self.UTIL].iloc[-1]>0) & (returns_sample[self.INDU].iloc[-1]<0) & (returns_sample[self.INDU].iloc[-2]>0), self.INI_WAIT_DAYS, 1),
np.where((returns_sample[self.SHCU].iloc[-1]>0) & (returns_sample[self.RICU].iloc[-1]<0) & (returns_sample[self.RICU].iloc[-2]>0), self.INI_WAIT_DAYS, 1)
))
)
adjwaitdays = min(60, self.WDadjvar)
# self.Debug('{}'.format(self.WDadjvar))
# Determine whether 'in' or 'out' of the market
if (extreme_b[self.SIGNALS + self.pairlist]).any():
self.be_in = False
self.outday = self.dcount
if self.dcount >= self.outday + adjwaitdays:
self.be_in = True
self.dcount += 1
#self.be_in = True # for testing; sets the algo to being always in
#we add first signal to list of signals
if len(self.signals) == 0:
self.signals.append(self.be_in)
else:
#when last signal is different from last signal we add it to the list
if self.signals[-1] != self.be_in:
self.signals.append(self.be_in)
def rebalance_when_out_of_the_market(self):
# Swap to 'out' assets if applicable
if not self.be_in:
self.wt[self.STKS] = 0
self.wt[self.TLT] = 1
# self.wt[self.IEF] = .5
if len(self.signals) > 1 and self.Portfolio[self.TLT].Quantity == 0:
self.SetHoldings([PortfolioTarget(self.STKS, 0), PortfolioTarget(self.TLT, 1)])
# for sec, weight in self.wt.items():
# closePosition = (self.Portfolio[sec].Quantity > 0) and (weight == 0)
# if closePosition:
# self.SetHoldings(sec, weight)
# #second open position
# for sec, weight in self.wt.items():
# openPosisition = (self.Portfolio[sec].Quantity == 0) and (weight > 0)
# if openPosisition:
# self.SetHoldings(sec, weight)
def rebalance_when_in_the_market(self):
# Swap to 'in' assets if applicable
if self.be_in:
self.wt[self.STKS] = 1
self.wt[self.TLT] = 0
if len(self.signals) > 1 and self.Portfolio[self.STKS].Quantity == 0:
self.SetHoldings([PortfolioTarget(self.TLT, 0), PortfolioTarget(self.STKS, 1)])
# self.wt[self.IEF] = 0
#first close position
# for sec, weight in self.wt.items():
# closePosition = (self.Portfolio[sec].Quantity > 0) and (weight == 0)
# if closePosition:
# self.SetHoldings(sec, weight)
# #second open position
# for sec, weight in self.wt.items():
# openPosisition = (self.Portfolio[sec].Quantity == 0) and (weight > 0)
# if openPosisition:
# self.SetHoldings(sec, weight)