| Overall Statistics |
|
Total Orders 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Start Equity 50000 End Equity 50000 Net Profit 0% Sharpe Ratio 0 Sortino Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset Portfolio Turnover 0% |
from AlgorithmImports import *
from QuantConnect.DataSource import *
import math
#endregion
import datetime
import calendar
class StockSelectionStrategyBasedOnFundamentalFactorsAlgorithm(QCAlgorithm):
def Initialize(self):
self.todaysDate = 7
self.thisMonth = 11
self.thisYear = 2024
self.SetStartDate(2024, 11, 7) # Set Start Date
# self.SetEndDate(2024, 10, 28)
self.SetEndDate(self.thisYear, self.thisMonth, self.todaysDate) # Set End Date
self.SetCash(50000) # Set Strategy Cash
self.rsRating = {}
self.weightedRoc = {}
self.sortedSymbol = []
self.weight1 = 0.2
self.weight2 = 0.2
self.weight3 = 0.2
self.weight4 = 0.4
self.topXPercent = 0.15
self.AddUniverse(self.CoarseSelectionFunction)
self.universe_settings.resolution = Resolution.Daily
self.Debug("==================")
def CoarseSelectionFunction(self, fine):
self.Debug("-------------")
fine = [x for x in fine if x.earning_reports.diluted_eps.twelve_months]
sorted_by_volume = sorted(fine, key=lambda x: x.dollar_volume, reverse=True)
sorted_by_volume = [x.Symbol for x in sorted_by_volume]
return sorted_by_volume
def OnData(self, data):
for symbol, tradeBar in data.bars.items():
history = self.History(symbol, 252, Resolution.Daily)
count = 1
closeList = []
for time, row in history.loc[symbol].iterrows():
if count == 1 or count == 121 or count == 189 or count == 229:
closeList.append(row['close'])
if count == 252:
roc1 = self.roc(closeList[0],row['close'])
roc2 = self.roc(closeList[1],row['close'])
roc3 = self.roc(closeList[2],row['close'])
roc4 = self.roc(closeList[3],row['close'])
self.weightedRoc[symbol] = roc1 * self.weight1 + roc2 * self.weight2 + roc3 * self.weight3 + roc4 * self.weight4
count += 1
self.weightedRoc = {k: v for k, v in sorted(self.weightedRoc.items(), key=lambda x: x[1])} #, reverse=True
count = 0
for k, v in self.weightedRoc.items():
self.sortedSymbol.append(k.value)
symbolSize = len(self.sortedSymbol)
for j in range(symbolSize):
self.rsRating[self.sortedSymbol[j]] = ((j + 1) / symbolSize)
self.rsRating = {k: v for k, v in sorted(self.rsRating.items(), key=lambda x: x[1], reverse=True)}
numberOfTopPercent = symbolSize * self.topXPercent
rsCount= 1
resultList = []
for k, v in self.rsRating.items():
if rsCount > numberOfTopPercent:
break
self.debug("key : {}, value : {}".format(k, v))
rsCount+=1
return
def roc(self, old, new):
result = ((new - old) / old)
return result