| Overall Statistics |
|
Total Trades 3434 Average Win 0.32% Average Loss -0.32% Compounding Annual Return 7.795% Drawdown 33.400% Expectancy 0.278 Net Profit 379.303% Sharpe Ratio 0.609 Probabilistic Sharpe Ratio 1.917% Loss Rate 35% Win Rate 65% Profit-Loss Ratio 0.97 Alpha 0.074 Beta -0.047 Annual Standard Deviation 0.117 Annual Variance 0.014 Information Ratio 0.012 Tracking Error 0.219 Treynor Ratio -1.501 Total Fees $6008.52 |
# https://quantpedia.com/Screener/Details/7
# The investment universe consists of global large cap stocks (or US large cap stocks).
# At the end of the each month, sort large dollar volume traded stocks,
# then sort them by total yield and ROE, then rank them by the last 100 days volatility.
# Go long 10 stocks with the lowest volatility.
from QuantConnect.Data.UniverseSelection import *
import math
import numpy as np
import pandas as pd
import scipy as sp
class ShortTermReversalAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1) # Set Start Date
#self.SetEndDate(2011, 1, 1) # Set Start Date
self.SetCash(100000) # Set Strategy Cash
self.lookback = 100
self.coarselist = 200
self.finelist = 75
self.stocks = 11
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
self.symbolDataDict = {}
self.AddEquity("SPY", Resolution.Daily)
self.AddEquity("UST", Resolution.Daily) # 7-10 yr treasury 2x start 2/1/2010
self.Schedule.On(self.DateRules.MonthEnd("SPY"),self.TimeRules.AfterMarketOpen("SPY", 30), self.rebalance)
def CoarseSelectionFunction(self, coarse):
selected = [x for x in coarse if (x.HasFundamentalData) and (float(x.Price) > 10)]
# rank the stocks by dollar volume
filtered = sorted(selected, key=lambda x: x.DollarVolume, reverse=True)
return [ x.Symbol for x in filtered[:self.coarselist]]
def FineSelectionFunction(self, fine):
#top = sorted(fine, key = lambda x: x.ValuationRatios.TotalYield, reverse=True)
#top = sorted(fine, key = lambda x: x.EarningReports.DividendPerShare.Value, reverse=True)
top = sorted(fine, key=lambda x: x.ValuationRatios.TotalYield and x.OperationRatios.ROE.Value, reverse=True)
return [x.Symbol for x in top[:self.finelist]]
def rebalance(self):
sorted_symbolData = sorted(self.symbolDataDict, key=lambda x: self.symbolDataDict[x].Volatility())
# pick the stocks with the lowest volatility
long_stocks = sorted_symbolData[:self.stocks]
stocks_invested = [x.Key for x in self.Portfolio if x.Value.Invested]
# liquidate stocks not in the list
for i in stocks_invested:
if i not in long_stocks:
self.Liquidate(i)
# long stocks with the lowest volatility
for i in long_stocks:
self.SetHoldings(i, 1/self.stocks)
self.SetHoldings('UST', 0)
invested = [ x.Symbol.Value for x in self.Portfolio.Values if x.Invested ] # create list of current positions
self.Log("invested: " + str(invested)) # print current positions
def OnData(self, data):
for symbol, symbolData in self.symbolDataDict.items():
# update the indicator value for newly added securities
if symbol not in self.addedSymbols:
symbolData.Price.Add(IndicatorDataPoint(symbol, self.Time, self.Securities[symbol].Close))
self.addedSymbols = []
self.removedSymbols = []
def OnSecuritiesChanged(self, changes):
# clean up data for removed securities
self.removedSymbols = [x.Symbol for x in changes.RemovedSecurities]
for removed in changes.RemovedSecurities:
symbolData = self.symbolDataDict.pop(removed.Symbol, None)
# warm up the indicator with history price for newly added securities
self.addedSymbols = [ x.Symbol for x in changes.AddedSecurities if x.Symbol.Value != "SPY"]
history = self.History(self.addedSymbols, self.lookback+1, Resolution.Daily)
for symbol in self.addedSymbols:
if symbol not in self.symbolDataDict.keys():
symbolData = SymbolData(symbol, self.lookback)
self.symbolDataDict[symbol] = symbolData
if str(symbol) in history.index:
symbolData.WarmUpIndicator(history.loc[str(symbol)])
class SymbolData:
'''Contains data specific to a symbol required by this model'''
def __init__(self, symbol, lookback):
self.symbol = symbol
self.Price = RollingWindow[IndicatorDataPoint](lookback)
def WarmUpIndicator(self, history):
# warm up the RateOfChange indicator with the history request
for tuple in history.itertuples():
item = IndicatorDataPoint(self.symbol, tuple.Index, float(tuple.close))
self.Price.Add(item)
def Volatility(self):
#data = [float(x.Value) for x in self.Price]
#return np.std(data)
data = [float(x.Value) for x in self.Price]
# Make it DataFrame:
df = pd.DataFrame(data)
# Get returns in percentage:
df = df.pct_change()
# Obtain standard deviation:
vol = df.std()
# Get last value
last_var = vol.iloc[-1]
# Cast it as float just in case:
return float(last_var)