| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0.156 Tracking Error 0.141 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
# region imports
from AlgorithmImports import *
from QuantConnect.Data.UniverseSelection import *
from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel
# endregion
class DeterminedTanKitten(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2018, 1, 1) # Set Start Date
self.SetEndDate(2019, 1, 1) # Set Start Date
self.SetCash(1000000) # Set Strategy Cash
self.AddUniverseSelection(FSTopMarketCapUniverseSelectionModel(sector = MorningstarSectorCode.FinancialServices,
number = 3,
universe_settings = self.UniverseSettings))
def OnSecuritiesChanged(self, changes: SecurityChanges) -> None:
for security in changes.AddedSecurities:
self.Debug(f"Added {security.Symbol}")
for security in changes.RemovedSecurities:
self.Debug(f"Removed {security.Symbol}")
# def OnData(self, data: Slice):
# if not self.Portfolio.Invested:
# self.SetHoldings("SPY", 0.33)
# self.SetHoldings("BND", 0.33)
# self.SetHoldings("AAPL", 0.33)
class FSTopMarketCapUniverseSelectionModel(FineFundamentalUniverseSelectionModel):
def __init__(self, sector: MorningstarSectorCode, number: int,
universe_settings: UniverseSettings = None) -> None:
super().__init__(self.SelectCoarse, self.SelectFine, universe_settings)
self.sector = sector
self.number = number
def SelectCoarse(self, coarse: List[CoarseFundamental]) -> List[Symbol]:
#1. Filt to securities with fundamental data
return [c.Symbol for c in coarse if c.HasFundamentalData]
def SelectFine(self, fine: List[FineFundamental]) -> List[Symbol]:
#2. Select financial sector
filtered_fine = [x for x in fine if x.AssetClassification.MorningstarSectorCode == self.sector]
#3. Order by market cap descending.
sorted_by_mkcap = sorted(filtered_fine, key=lambda x: x.MarketCap, reverse=True)
#4. From different companies
companyId = {}
for c in sorted_by_mkcap:
identifier = c.CompanyReference.CompanyId
if not(companyId.get(identifier)):
companyId[identifier] = c.Symbol
if len(companyId)>=self.number:
return list(companyId.values())
return list(companyId.values()) # Return Top "number" assets by highest Market Cap in fianancial sector