| Overall Statistics |
|
Total Trades 10822 Average Win 0.07% Average Loss -0.03% Compounding Annual Return 36.170% Drawdown 25.700% Expectancy 0.375 Net Profit 90.994% Sharpe Ratio 1.466 Probabilistic Sharpe Ratio 66.566% Loss Rate 55% Win Rate 45% Profit-Loss Ratio 2.06 Alpha 0.358 Beta -0.178 Annual Standard Deviation 0.218 Annual Variance 0.048 Information Ratio 0.31 Tracking Error 0.342 Treynor Ratio -1.803 Total Fees $11900.68 Estimated Strategy Capacity $56000.00 Lowest Capacity Asset LBTYB SZC2UFSQNK9X |
from Execution.ImmediateExecutionModel import ImmediateExecutionModel
from Portfolio.EqualWeightingPortfolioConstructionModel import InsightWeightingPortfolioConstructionModel
from Portfolio.EqualWeightingPortfolioConstructionModel import EqualWeightingPortfolioConstructionModel
from Risk.MaximumDrawdownPercentPerSecurity import MaximumDrawdownPercentPerSecurity
from Risk.TrailingStopRiskManagementModel import TrailingStopRiskManagementModel
from AlphaModel import FundamentalFactorAlphaModel
class VerticalTachyonRegulators(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2019, 7, 1)
#self.SetEndDate(2021, 8, 1)
self.startCash = 100000
self.SetCash(self.startCash)
self.averages = {}
self.slowPeriod = int(self.GetParameter("slowPeriod"))
if self.slowPeriod is None:
self.slowPeriod = 160
self.fastPeriod = int(self.GetParameter("fastPeriod"))
if self.fastPeriod is None:
self.fastPeriod = 15
# Benchmark
#self.bench = self.AddEquity("SPY", Resolution.Daily).Symbol
#self.benchmark = self.AddEquity("SPY", Resolution.Daily)
#self.benchStartPrice = self.benchmark.Price
#self.SetBenchmark(self.bench)
# Execution model
self.SetExecution(ImmediateExecutionModel())
# Portfolio construction model
self.SetPortfolioConstruction(InsightWeightingPortfolioConstructionModel())
#self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel())
# Risk model
stopRisk = self.GetParameter("stopRisk")
if stopRisk is None:
stopRisk = 0.25
self.SetRiskManagement(TrailingStopRiskManagementModel(float(stopRisk)))
#self.SetRiskManagement(MaximumDrawdownPercentPerSecurity(float(stopRisk)))
# Universe selection
self.num_coarse = 4000
self.num_fine = 30
self.UniverseSettings.Leverage = 1
self.UniverseSettings.Resolution = Resolution.Daily
#self.UniverseSettings.MinimumTimeInUniverse = timedelta(days=30)
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
# rebalancing
self.lastMonth = -1
# Set factor weighting
quality_weight = self.GetParameter("quality_weight")
if quality_weight is None:
quality_weight = 15
size_weight = self.GetParameter("size_weight")
if size_weight is None:
size_weight = 1
value_weight = self.GetParameter("value_weight")
if value_weight is None:
value_weight = 1
# Alpha Model
self.AddAlpha(FundamentalFactorAlphaModel(self.num_fine, quality_weight, value_weight, size_weight))
# schedule weekly plotting
self.Schedule.On(self.DateRules.Every(DayOfWeek.Monday),
self.TimeRules.At(10, 30),
self.Plotting)
def Plotting(self):
self.Plot("Positions", "Num", len([x.Symbol for x in self.Portfolio.Values if self.Portfolio[x.Symbol].Invested]))
#benchPerformance = self.benchmark.Price / self.benchStartPrice
#self.Plot("Performance", "Performance", benchPerformance)
def CoarseSelectionFunction(self, coarse):
selector = []
# If not time to rebalance, keep the same universe
if self.Time.month == self.lastMonth:
return Universe.Unchanged
# Else reassign the month variable
self.lastMonth = self.Time.month
# Select only those with fundamental data and a sufficiently large price
# Sort by top dollar volume: most liquid to least liquid
selected = sorted([x for x in coarse if x.HasFundamentalData and x.Price > 5],
key = lambda x: x.DollarVolume, reverse=True)
# Only add uptrending securities (EMA based)
for finer in selected:
symbol = finer.Symbol
#self.Debug(symbol)
if symbol not in self.averages:
# Call history to get an array of X days of history data
history = self.History(symbol, self.slowPeriod, Resolution.Daily)
#Pass in the history result to SelectionData
self.averages[symbol] = SelectionData(history, self.slowPeriod, self.fastPeriod)
self.averages[symbol].update(self.Time, finer.AdjustedPrice)
if self.averages[symbol].is_ready() and self.averages[symbol].fast > self.averages[symbol].slow:
selector.append(finer)
return [x.Symbol for x in selector[:self.num_coarse]]
def FineSelectionFunction(self, fine):
# Filter the fine data for equities with non-zero/non-null values
filtered_fine = [x.Symbol for x in fine if x.OperationRatios.ROE.SixMonths > 0.05
and x.ValuationRatios.PriceChange1M > 0
and x.ValuationRatios.FCFYield > 0
and x.MarketCap > 0]
return filtered_fine
class SelectionData():
def __init__(self, history, slowPeriod, fastPeriod):
#Save the fast and slow ExponentialMovingAverage
self.slow = ExponentialMovingAverage(slowPeriod)
self.fast = ExponentialMovingAverage(fastPeriod)
#Loop over the history data and update the indicators
for bar in history.itertuples():
self.fast.Update(bar.Index[1], bar.close)
self.slow.Update(bar.Index[1], bar.close)
#Check if our indicators are ready
def is_ready(self):
return self.slow.IsReady and self.fast.IsReady
#Use the "indicator.Update" method to update the time and price of both indicators
def update(self, time, price):
self.fast.Update(time, price)
self.slow.Update(time, price)from datetime import timedelta
class FundamentalFactorAlphaModel(AlphaModel):
def __init__(self, num_fine, quality_weight, value_weight, size_weight):
# Initialize the various variables/helpers we'll need
self.lastMonth = -1
self.longs = []
self.num_fine = num_fine
self.period = timedelta(31)
# normalize quality, value, size weights
weights = [float(quality_weight), float(value_weight), float(size_weight)]
weights = [float(i)/sum(weights) for i in weights]
self.quality_weight = weights[0]
self.value_weight = weights[1]
self.size_weight = weights[2]
def Update(self, algorithm, data):
'''Updates this alpha model with the latest data from the algorithm.
This is called each time the algorithm receives data for subscribed securities
Args:
algorithm: The algorithm instance
data: The newa available
Returns:
New insights'''
# Return no insights if it's not time to rebalance
if algorithm.Time.month == self.lastMonth:
return []
self.lastMonth = algorithm.Time.month
# List of insights
# Insights of the form: Insight(symbol, timedelta, type, direction, magnitude, confidence, sourceModel, weight)
insights = []
# Close old positions if they aren't in longs
for security in algorithm.Portfolio.Values:
if security.Invested and security.Symbol not in self.longs:
insights.append(Insight(security.Symbol, self.period, InsightType.Price,
InsightDirection.Flat, None, None, None, None))
length = len(self.longs)
for i in range(length):
insights.append(Insight(self.longs[i], self.period, InsightType.Price,
InsightDirection.Up, None, (length - i)**2, None, (length - i)**2 ))
return insights
def OnSecuritiesChanged(self, algorithm, changes):
'''Event fired each time the we add/remove securities from the data feed
Args:
algorithm: The algorithm instance that experienced the change in securities
changes: The security additions and removals from the algorithm'''
# Get the added securities
addedSecurities = [x for x in changes.AddedSecurities]
algorithm.Debug(len(addedSecurities))
if len(addedSecurities) == 0:
return
# Assign quality, value, size score to each stock
quality_scores = self.Scores(addedSecurities, [(lambda x: x.Fundamentals.OperationRatios.ROE.SixMonths, True, 1)])
#(lambda x: x.Fundamentals.OperationRatios.QuickRatio.Value, True, 1)])
#(lambda x: x.Fundamentals.OperationRatios.DebttoAssets.Value, False, 1)])
value_scores = self.Scores(addedSecurities, [(lambda x: x.Fundamentals.ValuationRatios.FCFYield, True, 1)])
# larger caps = True, smaller caps = False
size_scores = self.Scores(addedSecurities, [(lambda x: x.Fundamentals.MarketCap, False, 1)])
scores = {}
# Assign a combined score to each stock
for symbol,value in quality_scores.items():
quality_rank = value
value_rank = value_scores[symbol]
size_rank = size_scores[symbol]
scores[symbol] = quality_rank*self.quality_weight + value_rank*self.value_weight + size_rank*self.size_weight
# Sort the securities by their scores
sorted_stock = sorted(scores.items(), key=lambda tup : tup[1], reverse=False)
sorted_symbol = [tup[0] for tup in sorted_stock][:self.num_fine]
# Sort the top stocks into the long_list
self.longs = [security.Symbol for security in sorted_symbol]
# Log longs symbols and their score
#algorithm.Log(", ".join([str(x.Symbol.Value) + ": " + str(scores[x]) for x in sorted_symbol]))
def Scores(self, addedSecurities, fundamentals):
'''Assigns scores to each stock in added
Args:
added: list of sceurities
fundamentals: list of 3-tuples (lambda function, bool, float)
Returns:
Dictionary with score for each security'''
length = len(fundamentals)
if length == 0:
return {}
# Initialize helper variables
scores = {}
sortedBy = []
rank = [0 for _ in fundamentals]
# Normalize weights
weights = [tup[2] for tup in fundamentals]
weights = [float(i)/sum(weights) for i in weights]
# Create sorted list for each fundamental factor passed
for tup in fundamentals:
sortedBy.append(sorted(addedSecurities, key=tup[0], reverse=tup[1]))
# Create and save score for each symbol
for index,symbol in enumerate(sortedBy[0]):
# Save symbol's rank for each fundamental factor
rank[0] = index
for j in range(1, length):
rank[j] = sortedBy[j].index(symbol)
# Save symbol's total score
score = 0
for i in range(length):
score += rank[i] * weights[i]
scores[symbol] = score
return scores