| Overall Statistics |
|
Total Trades 120 Average Win 2.94% Average Loss -2.80% Compounding Annual Return 1.323% Drawdown 28.000% Expectancy 0.016 Net Profit 0.321% Sharpe Ratio 0.442 Loss Rate 50% Win Rate 50% Profit-Loss Ratio 1.05 Alpha 5.332 Beta -250.507 Annual Standard Deviation 0.837 Annual Variance 0.701 Information Ratio 0.418 Tracking Error 0.838 Treynor Ratio -0.001 Total Fees $730.26 |
from QuantConnect.Data.UniverseSelection import *
import math
import numpy as np
import pandas as pd
import scipy as sp
import decimal as d
# import statsmodels.api as sm
class abc(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2007, 12, 31)
self.SetEndDate(2008, 3, 30)
self.SetCash(50000)
self.equity = self.AddEquity("MOS", Resolution.Daily).Symbol
self.Schedule.On(self.DateRules.EveryDay("MOS"), self.TimeRules.At(9, 35), Action(self.buy))
self.Schedule.On(self.DateRules.EveryDay("MOS"), self.TimeRules.At(16, 15), Action(self.sell))
def buy(self):
self.SetHoldings(self.equity, 1)
def sell(self):
self.SetHoldings(self.equity, -1)