| Overall Statistics |
|
Total Trades 894 Average Win 0.39% Average Loss -0.33% Compounding Annual Return 32.137% Drawdown 16.400% Expectancy 0.359 Net Profit 82.647% Sharpe Ratio 1.623 Loss Rate 38% Win Rate 62% Profit-Loss Ratio 1.18 Alpha 0.238 Beta -0.001 Annual Standard Deviation 0.147 Annual Variance 0.022 Information Ratio 0.371 Tracking Error 0.182 Treynor Ratio -159.855 Total Fees $936.27 |
from System.Collections.Generic import List
from QuantConnect.Data.UniverseSelection import *
import operator
from math import ceil,floor
class CoarseFineFundamentalComboAlgorithm(QCAlgorithm):
'''In this algorithm we demonstrate how to define a universe as a combination of use the coarse fundamental data and fine fundamental data'''
def Initialize(self):
self.SetStartDate(2012,01,02) #Set Start Date
self.SetEndDate(2014,03,02) #Set End Date
self.SetCash(50000) #Set Strategy Cash
self.flag1 = 1
self.flag2 = 0
self.flag3 = 0
self.UniverseSettings.Resolution = Resolution.Daily
# this add universe method accepts two parameters:
# - coarse selection function: accepts an IEnumerable<CoarseFundamental> and returns an IEnumerable<Symbol>
# - fine selection function: accepts an IEnumerable<FineFundamental> and returns an IEnumerable<Symbol>
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
self.AddEquity("SPY")
self.__numberOfSymbols = 200
self.__numberOfSymbolsFine = 20
self.num_portfolios = 5
self._changes = SecurityChanges.None
self.Schedule.On(self.DateRules.MonthStart("SPY"), self.TimeRules.AfterMarketOpen("SPY"), Action(self.Rebalancing))
# sort the data by daily dollar volume and take the top 'NumberOfSymbols'
def CoarseSelectionFunction(self, coarse):
if self.flag1:
CoarseWithFundamental = [x for x in coarse if x.HasFundamentalData]
sortedByDollarVolume = sorted(CoarseWithFundamental, key=lambda x: x.DollarVolume, reverse=True)
# return the symbol objects of the top entries from our sorted collection
top = sortedByDollarVolume[:self.__numberOfSymbols]
# we need to return only the symbol objects
list = List[Symbol]()
for x in top:
list.Add(x.Symbol)
return list
else:
return(List[Symbol]())
def FineSelectionFunction(self, fine):
if self.flag1:
self.flag1 = 0
self.flag2 = 1
filtered_fine = [x for x in fine if x.ValuationRatios.PERatio
and x.ValuationRatios.PriceChange1M
and x.ValuationRatios.BookValuePerShare]
sortedByfactor1 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.PERatio, reverse=False)
sortedByfactor2 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.PriceChange1M, reverse=False)
sortedByfactor3 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.BookValuePerShare, reverse=True)
num_stocks = floor(len(filtered_fine)/self.num_portfolios)*self.num_portfolios
stock_dict = {}
for i,ele in enumerate(sortedByfactor1):
rank1 = i
rank2 = sortedByfactor2.index(ele)
rank3 = sortedByfactor3.index(ele)
score = [ceil(rank1/num_stocks),ceil(rank2/num_stocks),ceil(rank3/num_stocks)]
score = sum(score)
stock_dict[ele] = score
self.sorted_stock = sorted(stock_dict.items(), key=lambda d:d[1],reverse=True)
sorted_symbol = [self.sorted_stock[i][0] for i in xrange(len(self.sorted_stock))]
# take the top entries from our sorted collection
topFine = sorted_symbol[:self.__numberOfSymbolsFine]
list = List[Symbol]()
for x in topFine:
list.Add(x.Symbol)
self.flag3 = self.flag3 + 1
return list
else:
return (List[Symbol]())
def OnData(self, data):
if self.flag3 > 0:
if self.flag2 == 1:
self.flag2 = 0
# if we have no changes, do nothing
if self._changes == SecurityChanges.None: return
# liquidate removed securities
for security in self._changes.RemovedSecurities:
if security.Invested:
self.Liquidate(security.Symbol)
for security in self._changes.AddedSecurities:
self.SetHoldings(security.Symbol, 1/float(len(self._changes.AddedSecurities)))
self._changes = SecurityChanges.None;
# this event fires whenever we have changes to our universe
def OnSecuritiesChanged(self, changes):
self._changes = changes
def Rebalancing(self):
self.flag1 = 1