| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -2.845 Tracking Error 0.083 Treynor Ratio 0 Total Fees $0.00 |
using QuantConnect.Data.Custom.Benzinga;
namespace QuantConnect.Algorithm.CSharp.AltData
{
/// <summary>
/// Benzinga is a provider of news data. Their news is made in-house
/// and covers stock related news such as corporate events.
/// </summary>
public class BenzingaNewsAlgorithm : QCAlgorithm
{
// Predefine a dictionary of words with scores to scan for in the description
// of the Benzinga news article
private readonly Dictionary<string, double> _words = new Dictionary<string, double>()
{
{"bad", -0.5}, {"good", 0.5},
{"negative", -0.5}, {"great", 0.5},
{"growth", 0.5}, {"fail", -0.5},
{"failed", -0.5}, {"success", 0.5},
{"nailed", 0.5}, {"beat", 0.5},
{"missed", -0.5}
};
// Trade only every 5 days
private DateTime _lastTrade = DateTime.MinValue;
/// <summary>
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
/// </summary>
public override void Initialize()
{
SetStartDate(2018, 6, 5);
SetEndDate(2018, 8, 4);
SetCash(100000);
var aapl = AddEquity("AAPL", Resolution.Hour).Symbol;
var ibm = AddEquity("IBM", Resolution.Hour).Symbol;
AddData<BenzingaNews>(aapl);
AddData<BenzingaNews>(ibm);
}
public override void OnData(Slice data)
{
if ((Time - _lastTrade) < TimeSpan.FromDays(5))
{
return;
}
// Get rid of our holdings after 5 days, and start fresh
Liquidate();
// Get all Benzinga data and loop over it
foreach (var article in data.Get<BenzingaNews>().Values)
{
// Select the same Symbol we're getting a data point for
// from the articles list so that we can get the sentiment of the article.
// We use the underlying Symbol because the Symbols included in the `Symbols` property
// are equity Symbols.
var selectedSymbol = article.Symbols.SingleOrDefault(s => s == article.Symbol.Underlying);
if (selectedSymbol == null)
{
throw new Exception($"Could not find current Symbol {article.Symbol.Underlying} even though it should exist");
}
// The intersection of the article contents and the pre-defined words are the words that are included in both collections
var intersection = article.Contents.ToLowerInvariant().Split(' ').Intersect(_words.Keys);
// Get the words, then get the aggregate sentiment
var sentimentSum = intersection.Select(x => _words[x]).Sum();
if (sentimentSum >= 0.5)
{
Log($"Longing {article.Symbol.Underlying} with sentiment score of {sentimentSum}");
SetHoldings(article.Symbol.Underlying, sentimentSum / 5);
_lastTrade = Time;
}
if (sentimentSum <= -0.5)
{
Log($"Shorting {article.Symbol.Underlying} with sentiment score of {sentimentSum}");
SetHoldings(article.Symbol.Underlying, sentimentSum / 5);
_lastTrade = Time;
}
}
}
public override void OnSecuritiesChanged(SecurityChanges changes)
{
foreach (var r in changes.RemovedSecurities)
{
// If removed from the universe, liquidate and remove the custom data from the algorithm
Liquidate(r.Symbol);
RemoveSecurity(QuantConnect.Symbol.CreateBase(typeof(BenzingaNews), r.Symbol, Market.USA));
}
}
}
}