| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
import numpy as np
import pandas as pd
class DynamicMultidimensionalCoreWave(QCAlgorithm):
def Initialize(self):
#1. Required: Five years of backtest history
self.SetStartDate(2019, 1, 1)
self.SetEndDate(2019,1,10)
#2. Required: Alpha Streams Models:
self.SetBrokerageModel(BrokerageName.AlphaStreams)
#3. Required: Significant AUM Capacity
self.SetCash(5000000)
# Tech List
self.tech_etf = ["XLK", "QQQ", "SOXX", "IGV", "VGT", "QTEC", "FDN", "FXL",
"TECL", "SOXL", "SKYY", "SMH", "KWEB", "FTEC", "SOXS", "TECS"]
self.t_list = ["TECL", "TECS"]
#5. Set Relevent Benchmark
self.reference = "XLK"
self.AddEquity(self.reference, Resolution.Minute)
self.SetBenchmark(self.reference)
# Add Equity ------------------------------------------------
for i in range(len(self.tech_etf)):
self.AddEquity(self.tech_etf[i],Resolution.Minute)
# Schedue ---------------------------------------------------
self.Schedule.On(self.DateRules.EveryDay("XLK"), self.TimeRules.AfterMarketOpen(self.reference, 0), self.tech_trade)
def OnData(self, data):
pass
def tech_trade(self):
history = self.History(self.tech_etf, 5, Resolution.Daily)
df_history = history['close'].unstack(level=0)
tech_columns = df_history.columns
self.Log('Tech_Symbols : Total ' + str(len(tech_columns)) + '\n' + str(tech_columns))
self.Log('df_Tech_History : ' + '\n' + str(df_history) +'\n')
history_tecs = self.History(self.t_list, 5, Resolution.Daily)
df_tecs = history_tecs['close'].unstack(level=0)
self.Log('df_TECL_TECS : ' + '\n' + str(df_tecs) +'\n')