| Overall Statistics |
|
Total Trades 6 Average Win 5.43% Average Loss -2.89% Compounding Annual Return 6.503% Drawdown 13.000% Expectancy 0.920 Net Profit 7.908% Sharpe Ratio 0.543 Probabilistic Sharpe Ratio 30.129% Loss Rate 33% Win Rate 67% Profit-Loss Ratio 1.88 Alpha 0.04 Beta 0.135 Annual Standard Deviation 0.139 Annual Variance 0.019 Information Ratio -0.635 Tracking Error 0.3 Treynor Ratio 0.559 Total Fees $6.00 Estimated Strategy Capacity $2500000.00 |
### <summary>
### Simple SMA Strategy intended to provide a minimal algorithm example using
### one indicator with the most basic plotting
### </summary>
from datetime import timedelta
class SMAAlgorithm(QCAlgorithm):
# 1 - Add the FANG stocks (Facebook, Amazon, , Netflix, Google)
# 2 - Cycle through stocks
# 3 - Cycle through list adding each equity
# 3 - Create an indicator dict like backtrader
def Initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
# Set our main strategy parameters
self.SetStartDate(2020,1,1) # Set Start Date
#self.SetEndDate(2018,1,1) # Set End Date
self.SetCash(10000) # Set Strategy Cash
SMA_Period = 14 # SMA Look back period
self.SMA_OB = 75 # SMA Overbought level
self.SMA_OS = 50 # SMA Oversold level
self.Allocate = 0.20 # Percentage of captital to allocate
self.Equities = ["FSLR", "FB"]
#self.smaDaily = SMA(symbol, 200, Resolution.Daily)
self.Indicators = dict()
self.Charts = dict()
self.Consolidators = dict()
# Find more symbols here: http://quantconnect.com/data
for Symbol in self.Equities:
self.Consolidators[Symbol] = dict()
self.AddEquity(Symbol, Resolution.Minute)
# Each Equity requires its own consoilidator! See:
# https://www.quantconnect.com/forum/discussion/1936/multiple-consolidators/p1
# https://www.quantconnect.com/forum/discussion/1587/multiple-symbol-indicator-values-in-consolidated-bar-handler/p1
# ------------------------
# Create our consolidators
self.Consolidators[Symbol]['onDayCon'] = TradeBarConsolidator(timedelta(days=1))
self.Consolidators[Symbol]['minutesCon'] = TradeBarConsolidator(timedelta(minutes=20))
# Register our Handlers
self.Consolidators[Symbol]['onDayCon'].DataConsolidated += self.onDay
self.Consolidators[Symbol]['minutesCon'].DataConsolidated += self.minutes20
self.Indicators[Symbol] = dict()
self.Indicators[Symbol]['SMA'] = dict()
self.Indicators[Symbol]['Ichimoku'] = dict()
self.Indicators[Symbol]['SMA']['SMA200'] = self.SMA(Symbol, 200, Resolution.Daily)
self.Indicators[Symbol]['SMA']['SMA50'] = self.SMA(Symbol, 50, Resolution.Daily)
self.Indicators[Symbol]['Ichimoku'] = self.ICHIMOKU(Symbol,9, 26, 26, 52, 26, 26, Resolution.Daily)
# Register the indicaors with our stock and consolidator
self.RegisterIndicator(Symbol, self.Indicators[Symbol]['SMA']['SMA50'], self.Consolidators[Symbol]['onDayCon'])
self.RegisterIndicator(Symbol, self.Indicators[Symbol]['SMA']['SMA200'], self.Consolidators[Symbol]['onDayCon'])
self.RegisterIndicator(Symbol, self.Indicators[Symbol]['Ichimoku'], self.Consolidators[Symbol]['onDayCon'])
# Finally add our consolidators to the subscription
# manager in order to receive updates from the engine
self.SubscriptionManager.AddConsolidator(Symbol, self.Consolidators[Symbol]['onDayCon'])
self.Charts[Symbol] = dict()
# Plot the SMA
SMAChartName = Symbol+" TradePlot"
self.Charts[Symbol][' TradePlot'] = Chart(SMAChartName, ChartType.Stacked)
self.Charts[Symbol][' TradePlot'].AddSeries(Series("200", SeriesType.Line))
self.Charts[Symbol][' TradePlot'].AddSeries(Series("50", SeriesType.Line))
self.Charts[Symbol][' TradePlot'].AddSeries(Series("close", SeriesType.Line))
self.Charts[Symbol][' TradePlot'].AddSeries(Series("SenkouA", SeriesType.Line))
self.Charts[Symbol][' TradePlot'].AddSeries(Series("SenkouB", SeriesType.Line))
self.Charts[Symbol][' TradePlot'].AddSeries(Series("Tenkan", SeriesType.Line))
self.Charts[Symbol][' TradePlot'].AddSeries(Series("Kijun", SeriesType.Line))
self.AddChart(self.Charts[Symbol][' TradePlot'])
# Create a custom volume chart
VolChartName = Symbol+" Volume"
self.Charts[Symbol]['VOL'] = Chart(VolChartName, ChartType.Stacked)
self.Charts[Symbol]['VOL'].AddSeries(Series('Buying Volume', SeriesType.Bar))
self.Charts[Symbol]['VOL'].AddSeries(Series('Selling Volume', SeriesType.Bar))
self.AddChart(self.Charts[Symbol]['VOL'])
# Ensure that the Indicator has enough data before trading.
self.SetWarmUp(timedelta(days= 200))
self.dayCount = 0
self.countMinutes = 0
def onDay(self,sender,bar):
# Make sure we are not warming up
if self.IsWarmingUp: return
Symbol = str(bar.get_Symbol())
#self.Plot(Symbol+' TradePlot', '50', self.Indicators[Symbol]['SMA']['SMA50'].Current.Value)
#self.Plot(Symbol+' TradePlot', '200', self.Indicators[Symbol]['SMA']['SMA200'].Current.Value)
# Loop through our equities
for Symbol in self.Equities:
# Add some alias for reading ease
Close= bar.Close
Volume = bar.Volume
SMA200 = self.Indicators[Symbol]['SMA']['SMA200'].Current.Value
SMA50 = self.Indicators[Symbol]['SMA']['SMA50'].Current.Value
tenkan = self.Indicators[Symbol]['Ichimoku'].Tenkan.Current.Value
kijun = self.Indicators[Symbol]['Ichimoku'].Kijun.Current.Value
senkouA = self.Indicators[Symbol]['Ichimoku'].SenkouA.Current.Value
senkouB = self.Indicators[Symbol]['Ichimoku'].SenkouB.Current.Value
#self.Debug("{}: Close: {} SMA: {}".format(Symbol, Close, SMA200))
if bar.Close >= bar.Open:
self.Plot(Symbol+" Volume", 'Buying Volume', Volume)
else:
self.Plot(Symbol+" Volume", 'Selling Volume', Volume)
self.Plot(Symbol +' TradePlot', '200', SMA200)
self.Plot(Symbol +' TradePlot', '50', SMA50)
self.Plot(Symbol +' TradePlot', 'close', Close)
self.Plot(Symbol +' TradePlot', 'Tenkan', tenkan)
self.Plot(Symbol +' TradePlot', 'Kijun', kijun)
self.Plot(Symbol +' TradePlot', 'SenkouA', senkouA)
self.Plot(Symbol +' TradePlot', 'SenkouB', senkouB)
# Determine our entry and exit conditions
# Do it here to avoid long lines later
Long_Con1 = SMA200 < SMA50
Long_Cond2 = True
Exit_Con1 = SMA200 > SMA50
Exit_Cond2 = True
if not self.Securities[Symbol].Invested:
# If not, the long conditions
if all([Long_Con1, Long_Cond2]):
# Buy!
self.SetHoldings(Symbol, self.Allocate)
else:
if all([Exit_Con1, Exit_Cond2]):
# Sell!
self.Liquidate(Symbol)
if self.dayCount> 3 : return
self.Debug(" onDay")
Symbol = str(bar.get_Symbol())
self.Debug(Symbol)
self.Debug(bar.Close)
self.dayCount = self.dayCount + 1
def minutes20(self,sender,bar):
if self.IsWarmingUp: return
#debug
if self.countMinutes> 3 : return
self.Debug(" 20Minutes")
Symbol = str(bar.get_Symbol())
self.Debug(Symbol)
self.Debug(bar.Close)
self.countMinutes = self.countMinutes + 1
def OnData(self, data):
'''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
Arguments:
data: Slice object keyed by symbol containing the stock data
'''
# Make sure we are not warming up
if self.IsWarmingUp: return