| Overall Statistics |
|
Total Trades 3 Average Win 0% Average Loss -0.37% Compounding Annual Return 18.556% Drawdown 69.800% Expectancy -1 Net Profit 134.327% Sharpe Ratio 0.524 Probabilistic Sharpe Ratio 5.107% Loss Rate 100% Win Rate 0% Profit-Loss Ratio 0 Alpha 0.315 Beta -0.166 Annual Standard Deviation 0.558 Annual Variance 0.311 Information Ratio 0.264 Tracking Error 0.587 Treynor Ratio -1.761 Total Fees $11.81 Estimated Strategy Capacity $2600000.00 Lowest Capacity Asset GME SC72NCBXXAHX |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
from System.Collections.Generic import List
### <summary>
### In this algorithm we demonstrate how to perform some technical analysis as
### part of your coarse fundamental universe selection
### </summary>
### <meta name="tag" content="using data" />
### <meta name="tag" content="indicators" />
### <meta name="tag" content="universes" />
### <meta name="tag" content="coarse universes" />
class EmaCrossUniverseSelectionAlgorithm(QCAlgorithm):
def Initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.SetStartDate(2017,1,1) #Set Start Date
self.SetEndDate(2022,1,1) #Set End Date
self.SetCash(100000) #Set Strategy Cash
self.UniverseSettings.Resolution = Resolution.Daily
self.UniverseSettings.Leverage = 2
self.coarse_count = 1
self.averages = { }
#reshuffle monthly
self.month = -1
# this add universe method accepts two parameters:
# - coarse selection function: accepts an IEnumerable<CoarseFundamental> and returns an IEnumerable<Symbol>
self.AddUniverse(self.CoarseSelectionFunction)
def OnData(self,slice):
self.Debug('On data called')
# sort the data by daily dollar volume and take the top 'NumberOfSymbols'
def CoarseSelectionFunction(self, coarse):
self.Debug('universe selection called')
sortedByDollarVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True)
filtered = [ x for x in sortedByDollarVolume
if x.Symbol.Value=='GME' ] #x.DollarVolume > 10000000
# We are going to use a dictionary to refer the object that will keep the moving averages
for cf in filtered:
if cf.Symbol not in self.averages:
self.averages[cf.Symbol] = SymbolData(cf.Symbol)
# Updates the SymbolData object with current EOD price
avg = self.averages[cf.Symbol]
avg.update(cf.EndTime, cf.AdjustedPrice)
#we want to update all EMA, but dont want to trade till month changes
if self.month == self.Time.month:
return Universe.Unchanged
else:
self.month = self.Time.month
# liquidate and rerank everything to see
# if each month actual orders are being placed
# self.Liquidate()
# Filter the values of the dict: we only want up-trending securities from ones which has indicator values
values = list(filter(lambda x: x.is_uptrend, self.averages.values()))
# Sorts the values of the dict: we want those with greater difference between the moving averages
values.sort(key=lambda x: x.scale, reverse=True)
for x in values[:self.coarse_count]:
self.Debug(str(self.Time) + 'price: ' + str(filtered[0].AdjustedPrice)+ ' 52w High: ' + str(x.fiftyTwoHigh.Current.Value) + ' Down from 52w High: ' + str(x.downFromHigh) +' period since 52w Low: ' + str(x.fiftyTwoLow.PeriodsSinceMinimum)+' 52w Low: ' + str(x.fiftyTwoLow.Current.Value)+' Up from 52w Low: ' + str(x.upFromLow))
# ensure the universe selection only run once in every month
# we need to return only the symbol objects
return [ x.symbol for x in values[:self.coarse_count] ]
# this event fires whenever we have changes to our universe
def OnSecuritiesChanged(self, changes):
self.Debug('On security changed called')
# liquidate removed securities
for security in changes.RemovedSecurities:
if security.Invested:
self.Liquidate(security.Symbol)
# we want 20% allocation in each security in our universe
for security in changes.AddedSecurities:
self.SetHoldings(security.Symbol, 0.1)
class SymbolData(object):
def __init__(self, symbol):
self.symbol = symbol
self.tolerance = 1.01
self.fast = ExponentialMovingAverage(50)
self.slow = ExponentialMovingAverage(200)
self.fiftyTwoHigh = Maximum(253)
self.fiftyTwoLow = Minimum(253)
self.downFromHigh=1
self.upFromLow=0
self.is_uptrend = False
self.scale = 0
def update(self, time, value):
#Updates the state of this indicator with the given value and returns true
#if this indicator is ready, false otherwise
self.fiftyTwoHigh.Update(time, value)
self.fiftyTwoLow.Update(time, value)
if self.fiftyTwoHigh.Update(time, value) and self.fiftyTwoLow.Update(time, value) and self.fast.Update(time, value) and self.slow.Update(time, value):
fast = self.fast.Current.Value
slow = self.slow.Current.Value
self.downFromHigh=1-(value/self.fiftyTwoHigh.Current.Value)
self.upFromLow=(value/self.fiftyTwoLow.Current.Value)-1
self.is_uptrend = fast > slow * self.tolerance
if self.is_uptrend:
self.scale = (fast - slow) / ((fast + slow) / 2.0)# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
from System.Collections.Generic import List
### <summary>
### In this algorithm we demonstrate how to perform some technical analysis as
### part of your coarse fundamental universe selection
### </summary>
### <meta name="tag" content="using data" />
### <meta name="tag" content="indicators" />
### <meta name="tag" content="universes" />
### <meta name="tag" content="coarse universes" />
class EmaCrossUniverseSelectionAlgorithm(QCAlgorithm):
def Initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.SetStartDate(2015,1,1) #Set Start Date
self.SetEndDate(2019,1,1) #Set End Date
self.SetCash(100000) #Set Strategy Cash
self.UniverseSettings.Resolution = Resolution.Daily
self.UniverseSettings.Leverage = 2
self.coarse_count = 10
self.averages = { }
# this add universe method accepts two parameters:
# - coarse selection function: accepts an IEnumerable<CoarseFundamental> and returns an IEnumerable<Symbol>
self.AddUniverse(self.CoarseSelectionFunction)
# sort the data by daily dollar volume and take the top 'NumberOfSymbols'
def CoarseSelectionFunction(self, coarse):
# We are going to use a dictionary to refer the object that will keep the moving averages
for cf in coarse:
if cf.Symbol not in self.averages:
self.averages[cf.Symbol] = SymbolData(cf.Symbol)
# Updates the SymbolData object with current EOD price
avg = self.averages[cf.Symbol]
avg.update(cf.EndTime, cf.AdjustedPrice)
# Filter the values of the dict: we only want up-trending securities
values = list(filter(lambda x: x.is_uptrend, self.averages.values()))
# Sorts the values of the dict: we want those with greater difference between the moving averages
values.sort(key=lambda x: x.scale, reverse=True)
for x in values[:self.coarse_count]:
self.Log('symbol: ' + str(x.symbol.Value) + ' scale: ' + str(x.scale))
# we need to return only the symbol objects
return [ x.symbol for x in values[:self.coarse_count] ]
# this event fires whenever we have changes to our universe
def OnSecuritiesChanged(self, changes):
# liquidate removed securities
for security in changes.RemovedSecurities:
if security.Invested:
self.Liquidate(security.Symbol)
# we want 20% allocation in each security in our universe
for security in changes.AddedSecurities:
self.SetHoldings(security.Symbol, 0.1)
class SymbolData(object):
def __init__(self, symbol):
self.symbol = symbol
self.tolerance = 1.01
self.fast = ExponentialMovingAverage(50)
self.slow = ExponentialMovingAverage(200)
self.is_uptrend = False
self.scale = 0
def update(self, time, value):
if self.fast.Update(time, value) and self.slow.Update(time, value):
fast = self.fast.Current.Value
slow = self.slow.Current.Value
self.is_uptrend = fast > slow * self.tolerance
if self.is_uptrend:
self.scale = (fast - slow) / ((fast + slow) / 2.0)