| Overall Statistics |
|
Total Orders 3050 Average Win 4.29% Average Loss -2.20% Compounding Annual Return 82.667% Drawdown 58.700% Expectancy 0.159 Start Equity 100000 End Equity 3733460.6 Net Profit 3633.461% Sharpe Ratio 1.225 Sortino Ratio 1.662 Probabilistic Sharpe Ratio 43.031% Loss Rate 61% Win Rate 39% Profit-Loss Ratio 1.96 Alpha 0.767 Beta -0.329 Annual Standard Deviation 0.606 Annual Variance 0.367 Information Ratio 1.03 Tracking Error 0.645 Treynor Ratio -2.254 Total Fees $371339.40 Estimated Strategy Capacity $270000000.00 Lowest Capacity Asset ES YTG30NVEFCW1 Portfolio Turnover 1663.12% |
# region imports
from AlgorithmImports import *
# endregion
class NoiseAreaBreakoutAlgorithm(QCAlgorithm):
def initialize(self):
self.set_start_date(2019, 5, 1)
self.set_end_date(2025, 5, 1)
self.set_cash(100_000)
# Set some parameters.
self._trading_interval_length = timedelta(minutes=30)
self._avg_move_lookback = 14 # days
self._target_volatility = 0.02 # 0.02 = 2%
self._max_exposure = 4 # 4 = 400%
# Add a universe of Futures contracts to trade.
self._future = self.add_future(
Futures.Indices.SP_500_E_MINI,
data_mapping_mode=DataMappingMode.LAST_TRADING_DAY,
data_normalization_mode=DataNormalizationMode.BACKWARDS_PANAMA_CANAL,
contract_depth_offset=0
)
self._future.set_filter(0, 180)
self._future.vwap = self.vwap(self._future.symbol)
self._future.daily_volatility = IndicatorExtensions.of(StandardDeviation(14), self.roc(self._future.symbol, 1, Resolution.DAILY))
self._future.avg_move_by_interval = {}
self._future.yesterdays_close = None
self._future.todays_open = None
# Add a Scheduled Event to place orders 30 minutes after market open.
date_rule = self.date_rules.every_day(self._future.symbol)
self.schedule.on(date_rule, self.time_rules.after_market_close(self._future.symbol, 1), lambda: setattr(self._future, 'yesterdays_close', self._future.price))
self.schedule.on(date_rule, self.time_rules.after_market_open(self._future.symbol, 1), lambda: setattr(self._future, 'todays_open', self._future.open))
self.schedule.on(date_rule, self.time_rules.every(self._trading_interval_length), self._rebalance)
self.schedule.on(date_rule, self.time_rules.before_market_close(self._future.symbol, 1), self.liquidate)
# Set a warm-up period to warm-up the indicators.
self.set_warm_up(timedelta(30))
def _rebalance(self):
# Wait until the market is open.
t = self.time
if (not self._future.yesterdays_close or
not self._future.exchange.hours.is_open(t, False) or
not self._future.exchange.hours.is_open(t - self._trading_interval_length, False)):
return
# Create an indicator for this time interval if it doesn't already exist.
trading_interval = (t.hour, t.minute)
if trading_interval not in self._future.avg_move_by_interval:
self._future.avg_move_by_interval[trading_interval] = SimpleMovingAverage(self._avg_move_lookback)
avg_move = self._future.avg_move_by_interval[trading_interval]
# Update the average move indicator.
move = abs(self._future.price / self._future.todays_open - 1)
if not avg_move.update(t, move):
return
# Wait until the daily volatility indicator is ready.
if not self._future.daily_volatility.is_ready or self.is_warming_up:
return
# Calculate the noise area.
upper_bound = max(self._future.yesterdays_close, self._future.todays_open) * (1+avg_move.current.value)
lower_bound = min(self._future.yesterdays_close, self._future.todays_open) * (1-avg_move.current.value)
# Scan for entries.
weight = min(self._max_exposure, self._target_volatility/self._future.daily_volatility.current.value) / self._max_exposure
contract = self.securities[self._future.mapped]
if not contract.holdings.is_long and self._future.price > upper_bound:
self.set_holdings(contract.symbol, weight)
elif not contract.holdings.is_short and self._future.price < lower_bound:
self.set_holdings(contract.symbol, -weight)
# Scan for exits.
elif (contract.holdings.is_long and self._future.price < max(upper_bound, self._future.vwap.current.value) or
contract.holdings.is_short and self._future.price > min(lower_bound, self._future.vwap.current.value)):
self.liquidate()
# Plot the current state.
self.plot('Weight', 'value', weight)
self.plot('Noise Area', 'Upper Bound', upper_bound)
self.plot('Noise Area', 'Lower Bound', lower_bound)
self.plot('Noise Area', 'Price', self._future.price)
self.plot('Noise Area', 'VWAP', self._future.vwap.current.value)
self.plot('Volatility', 'Future', self._future.daily_volatility.current.value)