Overall Statistics |
Total Trades 4187 Average Win 0.35% Average Loss -0.21% Compounding Annual Return 23.865% Drawdown 18.500% Expectancy 0.496 Net Profit 751.154% Sharpe Ratio 1.277 Probabilistic Sharpe Ratio 75.409% Loss Rate 43% Win Rate 57% Profit-Loss Ratio 1.64 Alpha 0.096 Beta 0.744 Annual Standard Deviation 0.133 Annual Variance 0.018 Information Ratio 0.693 Tracking Error 0.102 Treynor Ratio 0.228 Total Fees $20151.84 Estimated Strategy Capacity $150000000.00 Lowest Capacity Asset GOOCV VP83T1ZUHROL |
#region imports from AlgorithmImports import * #endregion from sklearn.model_selection import train_test_split from optimize import * import numpy as np import pandas as pd class EnsembleModel(): def __init__(self, algo): self.algo = algo self.models = None self.optimizer = None # Build a set of models def Train(self, X, y, returns): self.optimizer = ModelOptimizer(self.algo) try: self.models = self.optimizer.BuildModels(X, y, returns) except: pass # Return prediction as a +/- Z-Score of the prediction from the the threshold def Predict(self, X): z = 0 if self.models: total_weight = sum(model.test_score for model in self.models) for model in self.models: try: result = model.Predict(X) # Weight the result based on the models test score z = z + result * (model.test_score/total_weight) except: pass return z
#region imports from AlgorithmImports import * #endregion import talib from talib import func import numpy as np import pandas as pd # # This helper class allows us to easily add features to our dataset # add_features(df, ['EMA_7']) # # Other examples # EMA_7_28 gives you the ratio of these two EMA # EMA_7_28_diff gives you the difference of the current ratio and the last ratio for those two EMA # def ichimoku_a(high, low, n1 = 9, n2 = 26, n3 = 52): conv = 0.5 * (high.rolling(n1, min_periods=0).max() + low.rolling(n1, min_periods=0).min()) base = 0.5 * (high.rolling(n2, min_periods=0).max() + low.rolling(n2, min_periods=0).min()) spana = 0.5 * (conv + base) return pd.Series(spana) def ichimoku_b(high, low, n1 = 9, n2 = 26, n3 = 52): spanb = 0.5 * (high.rolling(n3, min_periods=0).max() + low.rolling(n3, min_periods=0).min()) return pd.Series(spanb) def obv_rolling_percent(close, volume, n, fillna=False): df = pd.DataFrame([close, volume]).transpose() df['OBV'] = 0 c1 = close < close.shift(1) c2 = close > close.shift(1) if c1.any(): df.loc[c1, 'OBV'] = - volume if c2.any(): df.loc[c2, 'OBV'] = volume obv = df['OBV'].rolling(n).sum() / df[volume.name].rolling(n).sum() if fillna: obv = obv.replace([np.inf, -np.inf], np.nan).fillna(0) return pd.Series(obv, name='obv') def kst(close, r1 = 3, r2 = 7, r3 = 14, r4 = 28, n1 = 10, n2 = 3, n3 = 7, n4 = 14): rocma1 = ((close - close.shift(r1)) / close.shift(r1)).rolling(n1, min_periods=0).mean() rocma2 = ((close - close.shift(r2)) / close.shift(r2)).rolling(n2, min_periods=0).mean() rocma3 = ((close - close.shift(r3)) / close.shift(r3)).rolling(n3, min_periods=0).mean() rocma4 = ((close - close.shift(r4)) / close.shift(r4)).rolling(n4, min_periods=0).mean() return 100 * (rocma1 + 2 * rocma2 + 3 * rocma3 + 4 * rocma4) def kst_sig(close, r1 = 3, r2 = 7, r3 = 14, r4 = 28, n1 = 10, n2 = 3, n3 = 7, n4 = 14, nsig = 6): kst_val = kst(clse, r1, r2, r3, r4, n1, n2, n3, n4) kstsig = kst_val.rolling(nsig, minperiods=0).mean() return kstsig def check_feature_cache(cache, name, f, args): if not name in cache: cache[name] = f(*args) return cache[name] def add_features(df, features, close="close", high="high", low="low", volume="volume"): fmap = {'MFI':'money_flow_index','ICHA':'ichimoku_a','ICHB':'ichimoku_b','BOLLH':'bollinger_hband', \ 'BOLLL':'bollinger_lband','KCC':'keltner_channel_central','NVI':'negative_volume_index', \ 'OBVP' : 'obv_rolling_percent', 'KST' : 'kst', 'KST_SIG' : 'kst_sig'} cache = {} for feature in features: # parse string. Style is func_period1_period2:COL=ColumnName1 (column name optional) col = None col_idx = feature.find(':') if col_idx > -1: col = feature[col_idx+1:] feature = feature[0:col_idx] p = feature.split('_') if not col is None: feature = feature + "_" + col fname = p[0].upper() # If DM, DI, or HT function will have underscore in name, need to add suffix back and shift params back if len(p) > 1 and (p[1] in ['DM','DI'] or p[0] in ['HT']): fname += '_' + p[1] for i in range(2,len(p)): p[i-1] = p[i] del p[-1] p1 = p[1].upper() if len(p) > 1 else None p2 = p[2].upper() if len(p) > 2 else None p3 = p[3].upper() if len(p) > 3 else None if fname in fmap: if fmap[fname].find('.') > -1: s = fmap[fname].split('.') cls = s[0] f = getattr(globals()[cls], s[1]) else: f = globals()[fmap[fname].lower()] elif fname in talib.__TA_FUNCTION_NAMES__: f = getattr(func, fname) elif fname.lower() in globals(): f = globals()[fname.lower()] else: raise Exception(f'Could not find function. fname: {fname} feature: {feature}') if fname.endswith('MA') or fname == 'T3': args = [df[close], int(p1)] if p2 is None: df[feature] = (check_feature_cache(cache, feature, f, args )) elif p2 == 'DIFF': ma1 = check_feature_cache(cache, fname + '_' + p1, f, args) df[feature] = ma1.pct_change() p2 = None # So it doesn't get diffed at end of method else: ma1 = check_feature_cache(cache, fname + '_' + p1, f, args) args = [df[close], int(p2)] ma2 = check_feature_cache(cache, fname + '_' + p2, f, args) df[feature] = (ma1 - ma2) / ma1 df[feature].replace([np.inf, -np.inf], 0, inplace=True) elif fname in ['CMO','TRIX','ROCP','ROCR100','ROC','BOLLH','BOLLL', 'RSI','MOM']: df[feature] = f(df[close], int(p1)) elif fname in ['MINUS_DM', 'PLUS_DM']: df[feature] = f(df[high], df[low], int(p1)) elif fname in ['ADX','ATR','KCC','MINUS_DI','PLUS_DI','WILLR']: try: if df[close].isnull().all(): df[feature] = np.nan elif p2 is None or p2.upper() == 'DIFF': df[feature] = f(df[high], df[low], df[close], int(p1)) # Change all to percent, except WILLR if not fname in ['WILLR','ADX']: df[feature] = df[feature]/df[close] else: #params = {'close' : df[close], 'high' : df[high],'low' : df[low], 'timeperiod' : int(p1)} args = [df[high], df[low], df[close], int(p1)] f1 = check_feature_cache(cache, fname + '_' + p1, f, args) args = [df[high], df[low], df[close], int(p2)] f2 = check_feature_cache(cache, fname + '_' + p2, f, args) df[feature] = (f1-f2)/f1 df[feature].replace([np.inf, -np.inf], 0, inplace=True) except Exception as ex: if str(ex) == 'inputs are all NaN': df[feature] = np.nan else: raise elif fname in ['MFI']: df[feature] = f(df[high], df[low], df[close], df[volume], int(p1)) elif fname in ['MACD', 'PPO', 'TSI']: df[feature] = f(df[close], int(p1), int(p2)) elif fname in ['ICHA', 'ICHB', 'AO']: # Normalize df[feature] = f(df[high], df[low], int(p1), int(p2)) # if fname.startswith('ICH'): # df[feature] = df[feature]/ df[close] elif fname in ['NVI']: df[feature] = f(df[close], df[volume]) elif fname in ['SAR', 'SAREXT']: # Normalize df[feature] = f(df[high], df[low]) #/ df[close] elif fname == 'KST': df[feature] = f(df[close], r1=10, r2=15, r3=20, r4=30, n1=10, n2=10, n3=10, n4=15) elif fname == 'KST_SIG': df[feature] = f(df[close], r1=10, r2=15, r3=20, r4=30, n1=10, n2=10, n3=10, n4=15, nsig=9) elif fname == 'AROON': df[feature] = f(df[high], df[low], int(p1))[int(p2)-1] elif fname == 'ULTOSC': df[feature] = f(df[high], df[low], df[close]) elif fname in ['OBVP']: df[feature] = f(df[close],df[volume],int(p1)) elif fname in ['OBTP']: df[feature] = f(df[close],df["Trades"],int(p1)) elif fname in ['HT_DCPERIOD','HT_DCPHASE','HT_PHASOR','HT_SINE', 'HT_TRENDMODE','STOCHRSI' ]: df[feature] = f(df[close]) else: raise Exception('Feature not found: ' + feature + ' ' + fname ) # Difference those that are 1 period diffs if p3 == 'DIFF' or p2 == 'DIFF': df[feature] = df[feature].diff() return df def get_exhaustive_ma_features_list(): features = [] periods = [7, 14, 28, 42, 70] mas = ["SMA", "DEMA", "KAMA", "EMA", "TEMA", "T3", "TRIMA", "WMA"] for p in periods: for ma in mas: features.append(ma + "_" + str(p)) for p1 in periods: for p2 in periods: if p2 <= p1: continue for ma in mas: ma1 = ma + str(p1) ma2 = ma + str(p2) features.append(ma + "_" + str(p1) + "_" + str(p2)) features.append(features[-1] + "_diff") return features def get_exhaustive_features_list(diffs=True): features = get_exhaustive_ma_features_list() periods = [3,7,14,20,30] band_periods = [7,14,21,28] hi_lo_periods = [[4,9],[7,14],[10,21],[12,26]] pfs = ['CMO','MINUS_DI','MINUS_DM','PLUS_DI','PLUS_DM','ROCP','ATR','ADX', 'TRIX','WILLR'] # Left out: MOM, VIN, VIP, ROC,ROCR,OBVM,EOM,DPI,RSI,STOCH,STOCH_SIG,FI for p in periods: features.append('AROON_' + str(p) + '_1') features.append('AROON_' + str(p) + '_2') for pf in pfs: if pf == 'ADX' and p == 3: continue features.append(pf + '_' + str(p)) if diffs: features.append(features[-1] + "_diff") if diffs: for p1 in periods: for p2 in periods: if p2 <= p1: continue for pf in pfs: pf1 = pf + str(p1) pf2 = pf + str(p2) features.append(pf + "_" + str(p1) + "_" + str(p2)) features.append(features[-1] + "_diff") hlfs = ['ICHA','ICHB'] # Exclude PPO, same as our MA setups # hi lo Indicators for hl in hi_lo_periods: for hlf in hlfs: features.append(hlf + '_' + str(hl[0]) + '_' + str(hl[1])) # other indicators otfs = ['SAR','SAREXT','HT_DCPERIOD','ULTOSC','OBVP_10','OBVP_20','OBVP_40','OBVP_80'] for otf in otfs: features.append(otf) return features
from AlgorithmImports import * from risk import BracketRiskModel, TrailingStopRiskManagementModelLiquidation from feature import add_features from ensemble import EnsembleModel from datetime import timedelta import pandas as pd import numpy as np import statistics import sklearn from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.utils import resample, shuffle import math class TransdimensionalDynamicThrustAssembly(QCAlgorithm): def Initialize(self): self.SetStartDate(2010, 1, 1) # Set Start Date self.SetEndDate(2020, 1, 1) # Set End Date self.InitCash = 100000 self.SetCash(self.InitCash) self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage) # time frames and frequencies self.resolution = Resolution.Daily self.rebalancefunc = Expiry.EndOfQuarter self.lookback = 250 self.metamodel_rolling_window = 50 # ML parameters self.years = 4 self.n_estimators = 10 self.min_samples_split = 140 self.num_iter = 10 self.num_test_records = 60 # UniverseSize determines the number of ETF constituents to select from each ETF. The top x by weight are selected. self.UniverseSize = 9 self.kelly_multiplier = 1 self.SetWarmup(self.lookback) # if this flag is set to false, none of the meta labeling code gets called, thus saving a lot of expensive compute self.meta_labelling = False if self.meta_labelling: import ht_auth ht_auth.SetToken(self.GetParameter("mlfinlab-api-key")) import mlfinlab as ml self.ml = ml from mlfinlab.bet_sizing import bet_sizing self.bet_sizing = bet_sizing # add SPY as the benchmark but don't trade it (that's what self.exclusions is for, it's being checked at various points)! self.SetBenchmark('SPY') self.MKT = self.AddEquity('SPY', self.resolution).Symbol self.mkt = [] self.exclusions = ['SPY'] self.UniverseSettings.Resolution = self.resolution features = ['HT_DCPERIOD', 'HT_DCPHASE', 'MOM_5', 'ADX_10_diff','MOM_5_diff'] self.etfs = ["SPY"] for etf in self.etfs: self.AddUniverse(self.Universe.ETF(etf, Market.USA, self.UniverseSettings, self.ETFConstituentsFilter)) # Select the alpha model self.SetAlpha(WeightedClassifierAlpha(self, features, self.lookback, self.metamodel_rolling_window, self.meta_labelling, self.years)) # Equally weigh securities in portfolio, based on insights self.SetPortfolioConstruction(InsightWeightingPortfolioConstructionModel()) # Set VWAP Execution Model (Immidiate Execution worked well, but VWAP execution seems to produce slightly better results) self.SetExecution(VolumeWeightedAveragePriceExecutionModel()) # Set Risk Management Model - none of the risk models imroved the performance over the alpha model's own flat insights, so for now NullRiskModel seems best # Bracket Risk Model (using SL and TP) and Trailing Stop (using SL only) are both modified to prevent the Alpha Model from re-opening positions that the risk model has closed # self.stopLoss = 0.02 # self.takeProfit = 0.95 self.SetRiskManagement(NullRiskManagementModel()) # self.SetRiskManagement(BracketRiskModel(self.stopLoss, self.takeProfit)) # self.SetRiskManagement(TrailingStopRiskManagementModelLiquidation(self.stopLoss)) def ETFConstituentsFilter(self, constituents: List[ETFConstituentData]) -> List[Symbol]: # Get the UniverseSize securities with the largest weight in the index selected = sorted([c for c in constituents if c.Weight], key=lambda c: c.Weight, reverse=True)[:self.UniverseSize] if not selected: self.Log("ETF symbols without weight. Returning Universe Unchanged: "+str([c.Value for c in Universe.Unchanged])) return Universe.Unchanged else: self.Log("ETF symbols selected: "+str([c.Symbol.Value for c in selected])) return [c.Symbol for c in selected] def OnEndOfDay(self, symbol): # plot the benchmark on the main equities chart for comparison if not self.IsWarmingUp: mkt_price = self.History(self.MKT, 2, Resolution.Daily)['close'].unstack(level= 0).iloc[-1] self.mkt.append(mkt_price) mkt_perf = self.InitCash * self.mkt[-1] / self.mkt[0] self.Plot('Strategy Equity', self.MKT, mkt_perf) class WeightedClassifierAlpha(AlphaModel): def __init__(self, algo, features, lookback, metamodel_rolling_window, meta_labelling, years): self.algo = algo self.models = {} self.features = features self.rebalanceTime = datetime.min self.symbols = [] self.lookback = lookback self.metamodel_rolling_window = metamodel_rolling_window self.years = years self.kelly_size = {} self.avg_win = {} self.avg_loss = {} self.meta_labelling = meta_labelling self.primary_history = {} self.metamodel = {} self.triple_barrier_events = {} def Update(self, algo, data): insights = [] if not self.symbols: return insights try: # This can be adjusted to only allow trading for symbols with a certain Kelly size (as determined during the last training of the model) min_kelly = 0 # Load History and Features end = self.algo.Time start = end - timedelta(days=self.lookback) X = self.GetXforPrimaryModel(self.symbols, start, end) time = X.index[-1][0] X = X.loc[pd.IndexSlice[time, :], :] insights = [] if not self.algo.IsWarmingUp: # Predict each symbols direction for symbol in self.symbols: symbol = SymbolCache.GetSymbol(symbol) if symbol in self.kelly_size: kelly_size = self.kelly_size[symbol] if math.isnan(kelly_size): kelly_size = 0 self.algo.Log("NaN Kelly Size for "+str(symbol.Value)) else: kelly_size = 0 if symbol.Value not in self.algo.exclusions: self.algo.Log("No Kelly Size for "+str(symbol.Value)) if kelly_size >= min_kelly: X_symbol = X.loc[pd.IndexSlice[:, [symbol.ID.ToString()]], :] if self.models and data.ContainsKey(symbol) and data[symbol]: if symbol in self.models: model = self.models[symbol] result = model.Predict(X_symbol) direction = InsightDirection.Flat metapred = 1 metapred_prob = 1 size = self.kelly_size[symbol] * self.algo.kelly_multiplier if self.meta_labelling: if symbol in self.primary_history.keys() and symbol in self.metamodel: self.UpdateRollingHistoryWindow(symbol, data[symbol].EndTime, data[symbol].Close, result) X_meta, y_meta, li, tbi = self.GetXyforMetaModel(self.primary_history[symbol], symbol,0, False) metapred = self.metamodel[symbol].predict(X_meta.iloc[-1:])[0] metapred_prob = prob[-1][1] if self.avg_win[symbol] == 0 or self.avg_loss[symbol] == 0: size = 0 else: size = metapred_prob - ((1-metapred_prob)/(self.avg_win[symbol]/self.avg_loss[symbol])) # Alternatibely: using MLFinLab's bet_size_probability instead of kelly to determine size: # prob = self.metamodel[symbol].predict_proba(X_meta.fillna(0)) # zlst = list(zip(*prob)) # size = self.algo.bet_sizing.bet_size_probability(self.triple_barrier_events[symbol], pd.Series(zlst[1]), 2).iloc[-1] if math.isnan(size): size = 0 # using result as measure of confidence and (Kelly) size as weight. # (For InsightWeightingPortfolioConstructionModel confidence has no effect, this is just in case it might be useful for aby other PCM) if result > 0 and metapred and size > 0: insights.append( Insight.Price(symbol, timedelta(days=2), InsightDirection.Up, result, None, None, size)) elif result < 0: size = 0 insights.append( Insight.Price(symbol, timedelta(days=1), InsightDirection.Flat, -result, None, None, size)) return insights except Exception as e: self.algo.Log('Unexpected error during insights generation:' + str(e)) raise def OnSecuritiesChanged(self, algorithm: QCAlgorithm, changes: SecurityChanges) -> None: pred_hist = pd.DataFrame for security in changes.RemovedSecurities: if security.Symbol in self.symbols: self.symbols.remove(security.Symbol) self.metamodel.pop(security.Symbol, None) self.triple_barrier_events.pop(security.Symbol, None) if self.meta_labelling: self.primary_history.pop(security.Symbol, None) if security.Invested: self.algo.Liquidate(security.Symbol, "Removed from Universe") for security in changes.AddedSecurities: if security.Symbol.Value not in self.algo.exclusions: self.symbols.extend([security.Symbol]) if self.algo.Time > self.rebalanceTime: # it's time to re-train all models (and not just the newly added ones) symbols = self.symbols self.rebalanceTime = self.algo.rebalancefunc(self.algo.Time) self.algo.Debug(str(self.algo.Time)+" Rebalancing. Training all "+str([symbol.Value for symbol in symbols])) else: symbols = [security.Symbol for security in changes.AddedSecurities] self.algo.Debug(str(self.algo.Time)+" Not yet time for Rebalancing. Training new symbols "+str([symbol.Value for symbol in symbols])) if symbols: for symbol in symbols: self.models[symbol] = self.TrainModel(symbol, self.years) # initial history of newly added securities for meta labelling if self.meta_labelling: for symbol in symbols: if symbol.Value not in self.algo.exclusions: try: end = self.algo.Time - timedelta(days=1) start = end - timedelta(days=self.lookback * 2) X = self.GetXforPrimaryModel([symbol], start, end) historystart = self.algo.Time - timedelta(days=self.lookback) nearest = X.reset_index().time.searchsorted(historystart) historystart = X.index[nearest-1][0] pred_hist= self.algo.History(symbol, historystart, end, self.algo.resolution).droplevel(0, axis=0) pred_hist.index.names = ['date_time'] pred_hist = pred_hist[['close']] pred_hist['result']=0.0 iter_date = self.algo.Time - timedelta(days=self.lookback) self.primary_history[symbol] = pd.DataFrame(columns=['time','close','result']).set_index('time') while iter_date <= end: nearest = X.reset_index().time.searchsorted(iter_date) if 0 <= nearest < len(X.index): time = X.index[nearest][0] X_slice = X.loc[pd.IndexSlice[time, :], :] X_symbol = X_slice.loc[pd.IndexSlice[:, [symbol.ID.ToString()]], :] model = self.models[symbol] result = model.Predict(X_symbol) pred_hist.loc[time]['result'] = result if self.meta_labelling: self.UpdateRollingHistoryWindow(symbol, time, pred_hist.loc[time]['close'], result) iter_date += timedelta(days=1) self.metamodel[symbol], self.triple_barrier