| Overall Statistics |
|
Total Trades 4187 Average Win 0.35% Average Loss -0.21% Compounding Annual Return 23.865% Drawdown 18.500% Expectancy 0.496 Net Profit 751.154% Sharpe Ratio 1.277 Probabilistic Sharpe Ratio 75.409% Loss Rate 43% Win Rate 57% Profit-Loss Ratio 1.64 Alpha 0.096 Beta 0.744 Annual Standard Deviation 0.133 Annual Variance 0.018 Information Ratio 0.693 Tracking Error 0.102 Treynor Ratio 0.228 Total Fees $20151.84 Estimated Strategy Capacity $150000000.00 Lowest Capacity Asset GOOCV VP83T1ZUHROL |
#region imports
from AlgorithmImports import *
#endregion
from sklearn.model_selection import train_test_split
from optimize import *
import numpy as np
import pandas as pd
class EnsembleModel():
def __init__(self, algo):
self.algo = algo
self.models = None
self.optimizer = None
# Build a set of models
def Train(self, X, y, returns):
self.optimizer = ModelOptimizer(self.algo)
try:
self.models = self.optimizer.BuildModels(X, y, returns)
except:
pass
# Return prediction as a +/- Z-Score of the prediction from the the threshold
def Predict(self, X):
z = 0
if self.models:
total_weight = sum(model.test_score for model in self.models)
for model in self.models:
try:
result = model.Predict(X)
# Weight the result based on the models test score
z = z + result * (model.test_score/total_weight)
except:
pass
return z#region imports
from AlgorithmImports import *
#endregion
import talib
from talib import func
import numpy as np
import pandas as pd
#
# This helper class allows us to easily add features to our dataset
# add_features(df, ['EMA_7'])
#
# Other examples
# EMA_7_28 gives you the ratio of these two EMA
# EMA_7_28_diff gives you the difference of the current ratio and the last ratio for those two EMA
#
def ichimoku_a(high, low, n1 = 9, n2 = 26, n3 = 52):
conv = 0.5 * (high.rolling(n1, min_periods=0).max()
+ low.rolling(n1, min_periods=0).min())
base = 0.5 * (high.rolling(n2, min_periods=0).max()
+ low.rolling(n2, min_periods=0).min())
spana = 0.5 * (conv + base)
return pd.Series(spana)
def ichimoku_b(high, low, n1 = 9, n2 = 26, n3 = 52):
spanb = 0.5 * (high.rolling(n3, min_periods=0).max()
+ low.rolling(n3, min_periods=0).min())
return pd.Series(spanb)
def obv_rolling_percent(close, volume, n, fillna=False):
df = pd.DataFrame([close, volume]).transpose()
df['OBV'] = 0
c1 = close < close.shift(1)
c2 = close > close.shift(1)
if c1.any():
df.loc[c1, 'OBV'] = - volume
if c2.any():
df.loc[c2, 'OBV'] = volume
obv = df['OBV'].rolling(n).sum() / df[volume.name].rolling(n).sum()
if fillna:
obv = obv.replace([np.inf, -np.inf], np.nan).fillna(0)
return pd.Series(obv, name='obv')
def kst(close, r1 = 3, r2 = 7, r3 = 14, r4 = 28, n1 = 10, n2 = 3, n3 = 7, n4 = 14):
rocma1 = ((close - close.shift(r1))
/ close.shift(r1)).rolling(n1, min_periods=0).mean()
rocma2 = ((close - close.shift(r2))
/ close.shift(r2)).rolling(n2, min_periods=0).mean()
rocma3 = ((close - close.shift(r3))
/ close.shift(r3)).rolling(n3, min_periods=0).mean()
rocma4 = ((close - close.shift(r4))
/ close.shift(r4)).rolling(n4, min_periods=0).mean()
return 100 * (rocma1 + 2 * rocma2 + 3 * rocma3 + 4 * rocma4)
def kst_sig(close, r1 = 3, r2 = 7, r3 = 14, r4 = 28, n1 = 10, n2 = 3, n3 = 7, n4 = 14, nsig = 6):
kst_val = kst(clse, r1, r2, r3, r4, n1, n2, n3, n4)
kstsig = kst_val.rolling(nsig, minperiods=0).mean()
return kstsig
def check_feature_cache(cache, name, f, args):
if not name in cache:
cache[name] = f(*args)
return cache[name]
def add_features(df, features, close="close", high="high", low="low", volume="volume"):
fmap = {'MFI':'money_flow_index','ICHA':'ichimoku_a','ICHB':'ichimoku_b','BOLLH':'bollinger_hband', \
'BOLLL':'bollinger_lband','KCC':'keltner_channel_central','NVI':'negative_volume_index', \
'OBVP' : 'obv_rolling_percent', 'KST' : 'kst', 'KST_SIG' : 'kst_sig'}
cache = {}
for feature in features:
# parse string. Style is func_period1_period2:COL=ColumnName1 (column name optional)
col = None
col_idx = feature.find(':')
if col_idx > -1:
col = feature[col_idx+1:]
feature = feature[0:col_idx]
p = feature.split('_')
if not col is None:
feature = feature + "_" + col
fname = p[0].upper()
# If DM, DI, or HT function will have underscore in name, need to add suffix back and shift params back
if len(p) > 1 and (p[1] in ['DM','DI'] or p[0] in ['HT']):
fname += '_' + p[1]
for i in range(2,len(p)):
p[i-1] = p[i]
del p[-1]
p1 = p[1].upper() if len(p) > 1 else None
p2 = p[2].upper() if len(p) > 2 else None
p3 = p[3].upper() if len(p) > 3 else None
if fname in fmap:
if fmap[fname].find('.') > -1:
s = fmap[fname].split('.')
cls = s[0]
f = getattr(globals()[cls], s[1])
else:
f = globals()[fmap[fname].lower()]
elif fname in talib.__TA_FUNCTION_NAMES__:
f = getattr(func, fname)
elif fname.lower() in globals():
f = globals()[fname.lower()]
else:
raise Exception(f'Could not find function. fname: {fname} feature: {feature}')
if fname.endswith('MA') or fname == 'T3':
args = [df[close], int(p1)]
if p2 is None:
df[feature] = (check_feature_cache(cache, feature, f, args ))
elif p2 == 'DIFF':
ma1 = check_feature_cache(cache, fname + '_' + p1, f, args)
df[feature] = ma1.pct_change()
p2 = None # So it doesn't get diffed at end of method
else:
ma1 = check_feature_cache(cache, fname + '_' + p1, f, args)
args = [df[close], int(p2)]
ma2 = check_feature_cache(cache, fname + '_' + p2, f, args)
df[feature] = (ma1 - ma2) / ma1
df[feature].replace([np.inf, -np.inf], 0, inplace=True)
elif fname in ['CMO','TRIX','ROCP','ROCR100','ROC','BOLLH','BOLLL', 'RSI','MOM']:
df[feature] = f(df[close], int(p1))
elif fname in ['MINUS_DM', 'PLUS_DM']:
df[feature] = f(df[high], df[low], int(p1))
elif fname in ['ADX','ATR','KCC','MINUS_DI','PLUS_DI','WILLR']:
try:
if df[close].isnull().all():
df[feature] = np.nan
elif p2 is None or p2.upper() == 'DIFF':
df[feature] = f(df[high], df[low], df[close], int(p1))
# Change all to percent, except WILLR
if not fname in ['WILLR','ADX']:
df[feature] = df[feature]/df[close]
else:
#params = {'close' : df[close], 'high' : df[high],'low' : df[low], 'timeperiod' : int(p1)}
args = [df[high], df[low], df[close], int(p1)]
f1 = check_feature_cache(cache, fname + '_' + p1, f, args)
args = [df[high], df[low], df[close], int(p2)]
f2 = check_feature_cache(cache, fname + '_' + p2, f, args)
df[feature] = (f1-f2)/f1
df[feature].replace([np.inf, -np.inf], 0, inplace=True)
except Exception as ex:
if str(ex) == 'inputs are all NaN':
df[feature] = np.nan
else:
raise
elif fname in ['MFI']:
df[feature] = f(df[high], df[low], df[close], df[volume], int(p1))
elif fname in ['MACD', 'PPO', 'TSI']:
df[feature] = f(df[close], int(p1), int(p2))
elif fname in ['ICHA', 'ICHB', 'AO']:
# Normalize
df[feature] = f(df[high], df[low], int(p1), int(p2))
# if fname.startswith('ICH'):
# df[feature] = df[feature]/ df[close]
elif fname in ['NVI']:
df[feature] = f(df[close], df[volume])
elif fname in ['SAR', 'SAREXT']:
# Normalize
df[feature] = f(df[high], df[low]) #/ df[close]
elif fname == 'KST':
df[feature] = f(df[close], r1=10, r2=15, r3=20, r4=30, n1=10, n2=10, n3=10, n4=15)
elif fname == 'KST_SIG':
df[feature] = f(df[close], r1=10, r2=15, r3=20, r4=30, n1=10, n2=10, n3=10, n4=15, nsig=9)
elif fname == 'AROON':
df[feature] = f(df[high], df[low], int(p1))[int(p2)-1]
elif fname == 'ULTOSC':
df[feature] = f(df[high], df[low], df[close])
elif fname in ['OBVP']:
df[feature] = f(df[close],df[volume],int(p1))
elif fname in ['OBTP']:
df[feature] = f(df[close],df["Trades"],int(p1))
elif fname in ['HT_DCPERIOD','HT_DCPHASE','HT_PHASOR','HT_SINE', 'HT_TRENDMODE','STOCHRSI' ]:
df[feature] = f(df[close])
else:
raise Exception('Feature not found: ' + feature + ' ' + fname )
# Difference those that are 1 period diffs
if p3 == 'DIFF' or p2 == 'DIFF':
df[feature] = df[feature].diff()
return df
def get_exhaustive_ma_features_list():
features = []
periods = [7, 14, 28, 42, 70]
mas = ["SMA", "DEMA", "KAMA", "EMA", "TEMA", "T3", "TRIMA", "WMA"]
for p in periods:
for ma in mas:
features.append(ma + "_" + str(p))
for p1 in periods:
for p2 in periods:
if p2 <= p1:
continue
for ma in mas:
ma1 = ma + str(p1)
ma2 = ma + str(p2)
features.append(ma + "_" + str(p1) + "_" + str(p2))
features.append(features[-1] + "_diff")
return features
def get_exhaustive_features_list(diffs=True):
features = get_exhaustive_ma_features_list()
periods = [3,7,14,20,30]
band_periods = [7,14,21,28]
hi_lo_periods = [[4,9],[7,14],[10,21],[12,26]]
pfs = ['CMO','MINUS_DI','MINUS_DM','PLUS_DI','PLUS_DM','ROCP','ATR','ADX',
'TRIX','WILLR']
# Left out: MOM, VIN, VIP, ROC,ROCR,OBVM,EOM,DPI,RSI,STOCH,STOCH_SIG,FI
for p in periods:
features.append('AROON_' + str(p) + '_1')
features.append('AROON_' + str(p) + '_2')
for pf in pfs:
if pf == 'ADX' and p == 3:
continue
features.append(pf + '_' + str(p))
if diffs:
features.append(features[-1] + "_diff")
if diffs:
for p1 in periods:
for p2 in periods:
if p2 <= p1:
continue
for pf in pfs:
pf1 = pf + str(p1)
pf2 = pf + str(p2)
features.append(pf + "_" + str(p1) + "_" + str(p2))
features.append(features[-1] + "_diff")
hlfs = ['ICHA','ICHB']
# Exclude PPO, same as our MA setups
# hi lo Indicators
for hl in hi_lo_periods:
for hlf in hlfs:
features.append(hlf + '_' + str(hl[0]) + '_' + str(hl[1]))
# other indicators
otfs = ['SAR','SAREXT','HT_DCPERIOD','ULTOSC','OBVP_10','OBVP_20','OBVP_40','OBVP_80']
for otf in otfs:
features.append(otf)
return featuresfrom AlgorithmImports import *
from risk import BracketRiskModel, TrailingStopRiskManagementModelLiquidation
from feature import add_features
from ensemble import EnsembleModel
from datetime import timedelta
import pandas as pd
import numpy as np
import statistics
import sklearn
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.utils import resample, shuffle
import math
class TransdimensionalDynamicThrustAssembly(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2010, 1, 1) # Set Start Date
self.SetEndDate(2020, 1, 1) # Set End Date
self.InitCash = 100000
self.SetCash(self.InitCash)
self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage)
# time frames and frequencies
self.resolution = Resolution.Daily
self.rebalancefunc = Expiry.EndOfQuarter
self.lookback = 250
self.metamodel_rolling_window = 50
# ML parameters
self.years = 4
self.n_estimators = 10
self.min_samples_split = 140
self.num_iter = 10
self.num_test_records = 60
# UniverseSize determines the number of ETF constituents to select from each ETF. The top x by weight are selected.
self.UniverseSize = 9
self.kelly_multiplier = 1
self.SetWarmup(self.lookback)
# if this flag is set to false, none of the meta labeling code gets called, thus saving a lot of expensive compute
self.meta_labelling = False
if self.meta_labelling:
import ht_auth
ht_auth.SetToken(self.GetParameter("mlfinlab-api-key"))
import mlfinlab as ml
self.ml = ml
from mlfinlab.bet_sizing import bet_sizing
self.bet_sizing = bet_sizing
# add SPY as the benchmark but don't trade it (that's what self.exclusions is for, it's being checked at various points)!
self.SetBenchmark('SPY')
self.MKT = self.AddEquity('SPY', self.resolution).Symbol
self.mkt = []
self.exclusions = ['SPY']
self.UniverseSettings.Resolution = self.resolution
features = ['HT_DCPERIOD', 'HT_DCPHASE', 'MOM_5', 'ADX_10_diff','MOM_5_diff']
self.etfs = ["SPY"]
for etf in self.etfs:
self.AddUniverse(self.Universe.ETF(etf, Market.USA, self.UniverseSettings, self.ETFConstituentsFilter))
# Select the alpha model
self.SetAlpha(WeightedClassifierAlpha(self, features, self.lookback, self.metamodel_rolling_window, self.meta_labelling, self.years))
# Equally weigh securities in portfolio, based on insights
self.SetPortfolioConstruction(InsightWeightingPortfolioConstructionModel())
# Set VWAP Execution Model (Immidiate Execution worked well, but VWAP execution seems to produce slightly better results)
self.SetExecution(VolumeWeightedAveragePriceExecutionModel())
# Set Risk Management Model - none of the risk models imroved the performance over the alpha model's own flat insights, so for now NullRiskModel seems best
# Bracket Risk Model (using SL and TP) and Trailing Stop (using SL only) are both modified to prevent the Alpha Model from re-opening positions that the risk model has closed
# self.stopLoss = 0.02
# self.takeProfit = 0.95
self.SetRiskManagement(NullRiskManagementModel())
# self.SetRiskManagement(BracketRiskModel(self.stopLoss, self.takeProfit))
# self.SetRiskManagement(TrailingStopRiskManagementModelLiquidation(self.stopLoss))
def ETFConstituentsFilter(self, constituents: List[ETFConstituentData]) -> List[Symbol]:
# Get the UniverseSize securities with the largest weight in the index
selected = sorted([c for c in constituents if c.Weight],
key=lambda c: c.Weight, reverse=True)[:self.UniverseSize]
if not selected:
self.Log("ETF symbols without weight. Returning Universe Unchanged: "+str([c.Value for c in Universe.Unchanged]))
return Universe.Unchanged
else:
self.Log("ETF symbols selected: "+str([c.Symbol.Value for c in selected]))
return [c.Symbol for c in selected]
def OnEndOfDay(self, symbol):
# plot the benchmark on the main equities chart for comparison
if not self.IsWarmingUp:
mkt_price = self.History(self.MKT, 2, Resolution.Daily)['close'].unstack(level= 0).iloc[-1]
self.mkt.append(mkt_price)
mkt_perf = self.InitCash * self.mkt[-1] / self.mkt[0]
self.Plot('Strategy Equity', self.MKT, mkt_perf)
class WeightedClassifierAlpha(AlphaModel):
def __init__(self, algo, features, lookback, metamodel_rolling_window, meta_labelling, years):
self.algo = algo
self.models = {}
self.features = features
self.rebalanceTime = datetime.min
self.symbols = []
self.lookback = lookback
self.metamodel_rolling_window = metamodel_rolling_window
self.years = years
self.kelly_size = {}
self.avg_win = {}
self.avg_loss = {}
self.meta_labelling = meta_labelling
self.primary_history = {}
self.metamodel = {}
self.triple_barrier_events = {}
def Update(self, algo, data):
insights = []
if not self.symbols:
return insights
try:
# This can be adjusted to only allow trading for symbols with a certain Kelly size (as determined during the last training of the model)
min_kelly = 0
# Load History and Features
end = self.algo.Time
start = end - timedelta(days=self.lookback)
X = self.GetXforPrimaryModel(self.symbols, start, end)
time = X.index[-1][0]
X = X.loc[pd.IndexSlice[time, :], :]
insights = []
if not self.algo.IsWarmingUp:
# Predict each symbols direction
for symbol in self.symbols:
symbol = SymbolCache.GetSymbol(symbol)
if symbol in self.kelly_size:
kelly_size = self.kelly_size[symbol]
if math.isnan(kelly_size):
kelly_size = 0
self.algo.Log("NaN Kelly Size for "+str(symbol.Value))
else:
kelly_size = 0
if symbol.Value not in self.algo.exclusions:
self.algo.Log("No Kelly Size for "+str(symbol.Value))
if kelly_size >= min_kelly:
X_symbol = X.loc[pd.IndexSlice[:, [symbol.ID.ToString()]], :]
if self.models and data.ContainsKey(symbol) and data[symbol]:
if symbol in self.models:
model = self.models[symbol]
result = model.Predict(X_symbol)
direction = InsightDirection.Flat
metapred = 1
metapred_prob = 1
size = self.kelly_size[symbol] * self.algo.kelly_multiplier
if self.meta_labelling:
if symbol in self.primary_history.keys() and symbol in self.metamodel:
self.UpdateRollingHistoryWindow(symbol, data[symbol].EndTime, data[symbol].Close, result)
X_meta, y_meta, li, tbi = self.GetXyforMetaModel(self.primary_history[symbol], symbol,0, False)
metapred = self.metamodel[symbol].predict(X_meta.iloc[-1:])[0]
metapred_prob = prob[-1][1]
if self.avg_win[symbol] == 0 or self.avg_loss[symbol] == 0:
size = 0
else:
size = metapred_prob - ((1-metapred_prob)/(self.avg_win[symbol]/self.avg_loss[symbol]))
# Alternatibely: using MLFinLab's bet_size_probability instead of kelly to determine size:
# prob = self.metamodel[symbol].predict_proba(X_meta.fillna(0))
# zlst = list(zip(*prob))
# size = self.algo.bet_sizing.bet_size_probability(self.triple_barrier_events[symbol], pd.Series(zlst[1]), 2).iloc[-1]
if math.isnan(size):
size = 0
# using result as measure of confidence and (Kelly) size as weight.
# (For InsightWeightingPortfolioConstructionModel confidence has no effect, this is just in case it might be useful for aby other PCM)
if result > 0 and metapred and size > 0:
insights.append(
Insight.Price(symbol, timedelta(days=2), InsightDirection.Up, result, None, None, size))
elif result < 0:
size = 0
insights.append(
Insight.Price(symbol, timedelta(days=1), InsightDirection.Flat, -result, None, None, size))
return insights
except Exception as e:
self.algo.Log('Unexpected error during insights generation:' + str(e))
raise
def OnSecuritiesChanged(self, algorithm: QCAlgorithm, changes: SecurityChanges) -> None:
pred_hist = pd.DataFrame
for security in changes.RemovedSecurities:
if security.Symbol in self.symbols:
self.symbols.remove(security.Symbol)
self.metamodel.pop(security.Symbol, None)
self.triple_barrier_events.pop(security.Symbol, None)
if self.meta_labelling:
self.primary_history.pop(security.Symbol, None)
if security.Invested:
self.algo.Liquidate(security.Symbol, "Removed from Universe")
for security in changes.AddedSecurities:
if security.Symbol.Value not in self.algo.exclusions:
self.symbols.extend([security.Symbol])
if self.algo.Time > self.rebalanceTime:
# it's time to re-train all models (and not just the newly added ones)
symbols = self.symbols
self.rebalanceTime = self.algo.rebalancefunc(self.algo.Time)
self.algo.Debug(str(self.algo.Time)+" Rebalancing. Training all "+str([symbol.Value for symbol in symbols]))
else:
symbols = [security.Symbol for security in changes.AddedSecurities]
self.algo.Debug(str(self.algo.Time)+" Not yet time for Rebalancing. Training new symbols "+str([symbol.Value for symbol in symbols]))
if symbols:
for symbol in symbols:
self.models[symbol] = self.TrainModel(symbol, self.years)
# initial history of newly added securities for meta labelling
if self.meta_labelling:
for symbol in symbols:
if symbol.Value not in self.algo.exclusions:
try:
end = self.algo.Time - timedelta(days=1)
start = end - timedelta(days=self.lookback * 2)
X = self.GetXforPrimaryModel([symbol], start, end)
historystart = self.algo.Time - timedelta(days=self.lookback)
nearest = X.reset_index().time.searchsorted(historystart)
historystart = X.index[nearest-1][0]
pred_hist= self.algo.History(symbol, historystart, end, self.algo.resolution).droplevel(0, axis=0)
pred_hist.index.names = ['date_time']
pred_hist = pred_hist[['close']]
pred_hist['result']=0.0
iter_date = self.algo.Time - timedelta(days=self.lookback)
self.primary_history[symbol] = pd.DataFrame(columns=['time','close','result']).set_index('time')
while iter_date <= end:
nearest = X.reset_index().time.searchsorted(iter_date)
if 0 <= nearest < len(X.index):
time = X.index[nearest][0]
X_slice = X.loc[pd.IndexSlice[time, :], :]
X_symbol = X_slice.loc[pd.IndexSlice[:, [symbol.ID.ToString()]], :]
model = self.models[symbol]
result = model.Predict(X_symbol)
pred_hist.loc[time]['result'] = result
if self.meta_labelling:
self.UpdateRollingHistoryWindow(symbol, time, pred_hist.loc[time]['close'], result)
iter_date += timedelta(days=1)
self.metamodel[symbol], self.triple_barrier_events[symbol] = self.TrainMetaModel(pred_hist, symbol)
self.algo.Debug(str(self.algo.Time)+" Meta Model for symbol "+str(symbol.Value))
except:
self.algo.Error(str(self.algo.Time)+" No Meta Model for symbol "+str(symbol.Value))
def GetHistoryAndFeatures(self, symbols, start, end):
history = self.algo.History(symbols, start, end, self.algo.resolution)
gb = history.groupby('symbol', group_keys=False)
history['returns_1w'] = -gb.close.pct_change(-5)
history['returns_1d'] = -gb.close.pct_change(-1)
history['returns_1m'] = -gb.close.pct_change(-21)
gb = history.groupby('symbol', group_keys=False)
history = gb.apply(lambda x: add_features(x, self.features))
history = history.reset_index().set_index('time').sort_index()
history.index = history.index.normalize()
history = history.set_index('symbol', append=True)
return history
def GetXforPrimaryModel(self, symbols, start, end):
history = self.GetHistoryAndFeatures(symbols, start, end)
# Drop our Y columns before training
X = history.drop(columns=['returns_1d', 'returns_1w', 'returns_1m', 'close','high','low','open','volume'])
columns = X.columns[X.isna().any()].tolist()
return X.dropna()
def GetXyforMetaModel(self, df, symbol, shift, getlabels = True):
labels = None
y = None
labels_index = None
triple_barrier_events = None
df['side'] = np.nan
long_signals = df['result'] >= 0
short_signals = df['result'] < 0
df.loc[long_signals, 'side'] = 1
df.loc[short_signals, 'side'] = -1
# Remove Look ahead biase by lagging the signal
df['side'] = df['side'].shift(shift)
raw_data = df.copy()
# we only need to generate labels when we train. We use the same method to get our X to predict the primary model's performance, so we can pass getlabels = False to save some time
if getlabels:
# Drop the NaN values from our data set
df.dropna(axis=0, how='any', inplace=True)
# Compute daily volatility
try:
if len(df['close']) < self.metamodel_rolling_window:
metamodel_rolling_window = len(df['close'])
else:
metamodel_rolling_window = self.metamodel_rolling_window
daily_vol = self.algo.ml.util.get_daily_vol(close=df['close'], lookback=metamodel_rolling_window)
except:
self.algo.Error(str(self.algo.Time)+" daily_vol ERROR")
# Apply Symmetric CUSUM Filter and get timestamps for events
# Note: Only the CUSUM filter needs a point estimate for volatility
cusum_events = self.algo.ml.filters.cusum_filter(df['close'], threshold=daily_vol.mean()*0.5)
# Compute vertical barrier
vertical_barriers = self.algo.ml.labeling.add_vertical_barrier(t_events=cusum_events, close=df['close'], num_days=1)
# pt_sl = [1, 2]
pt_sl = [0, 0]
# min_ret = 0.005
min_ret = 0.0
try:
triple_barrier_events = self.algo.ml.labeling.get_events(close=df['close'],
t_events=cusum_events,
pt_sl=pt_sl,
target=daily_vol,
min_ret=min_ret,
num_threads=3,
vertical_barrier_times=vertical_barriers,
# vertical_barrier_times=False,
side_prediction=df['side'])
except:
self.algo.Error(str(self.algo.Time)+" events ERROR")
labels = self.algo.ml.labeling.get_bins(triple_barrier_events, df['close'])
# Log Returns
raw_data['log_ret'] = np.log(raw_data['close']).diff()
# Momentum
raw_data['mom1'] = raw_data['close'].pct_change(periods=1)
raw_data['mom2'] = raw_data['close'].pct_change(periods=2)
raw_data['mom3'] = raw_data['close'].pct_change(periods=3)
raw_data['mom4'] = raw_data['close'].pct_change(periods=4)
raw_data['mom5'] = raw_data['close'].pct_change(periods=5)
# Volatility
raw_data['volatility_50'] = raw_data['log_ret'].rolling(window=50, min_periods=50, center=False).std()
raw_data['volatility_31'] = raw_data['log_ret'].rolling(window=31, min_periods=31, center=False).std()
raw_data['volatility_15'] = raw_data['log_ret'].rolling(window=15, min_periods=15, center=False).std()
# # Serial Correlation (Takes about 4 minutes)
window_autocorr = 50
raw_data['autocorr_1'] = raw_data['log_ret'].rolling(window=window_autocorr, min_periods=window_autocorr, center=False).apply(lambda x: x.autocorr(lag=1), raw=False)
raw_data['autocorr_2'] = raw_data['log_ret'].rolling(window=window_autocorr, min_periods=window_autocorr, center=False).apply(lambda x: x.autocorr(lag=2), raw=False)
raw_data['autocorr_3'] = raw_data['log_ret'].rolling(window=window_autocorr, min_periods=window_autocorr, center=False).apply(lambda x: x.autocorr(lag=3), raw=False)
raw_data['autocorr_4'] = raw_data['log_ret'].rolling(window=window_autocorr, min_periods=window_autocorr, center=False).apply(lambda x: x.autocorr(lag=4), raw=False)
raw_data['autocorr_5'] = raw_data['log_ret'].rolling(window=window_autocorr, min_periods=window_autocorr, center=False).apply(lambda x: x.autocorr(lag=5), raw=False)
# Get the various log -t returns
raw_data['log_t1'] = raw_data['log_ret'].shift(1)
raw_data['log_t2'] = raw_data['log_ret'].shift(2)
raw_data['log_t3'] = raw_data['log_ret'].shift(3)
raw_data['log_t4'] = raw_data['log_ret'].shift(4)
raw_data['log_t5'] = raw_data['log_ret'].shift(5)
# Re compute sides
raw_data['side'] = np.nan
long_signals = raw_data['result'] >= 0
short_signals = raw_data['result'] < 0
raw_data.loc[long_signals, 'side'] = 1
raw_data.loc[short_signals, 'side'] = -1
# Remove look ahead bias
raw_data = raw_data.shift(shift)
# Get features at event dates
X= raw_data
# # Drop unwanted columns
X.drop(['close',], axis=1, inplace=True)
if labels is not None:
y = labels['bin']
labels_index = labels.index
return X, y, labels_index, triple_barrier_events
def UpdateRollingHistoryWindow(self, symbol, time, close, result):
new_row = pd.DataFrame([{'close': close, 'result': result}], index=[time])
self.primary_history[symbol] = pd.concat([self.primary_history[symbol], new_row], ignore_index=False).drop_duplicates(keep='last')
self.primary_history[symbol] = self.primary_history[symbol].iloc[-(self.metamodel_rolling_window+2):]
def TrainModel(self, symbol, years):
model = None
try:
# Load History and Features
total_days = 365 * years
start = self.algo.Time - timedelta(days=total_days)
end = self.algo.Time
history = self.GetHistoryAndFeatures(symbol, start, end)
# Set our Y to predict if symbols will be positive in 1 week
history = history.dropna()
y = history['returns_1w'] > 0
returns = history['returns_1w']
closes = history['close']
# Drop Y and close
X = history.drop(columns=['returns_1d', 'returns_1w', 'returns_1m', 'close','high','low','open','volume'])
# build model for the symbol
if symbol.Value not in self.algo.exclusions:
symbol = SymbolCache.GetSymbol(symbol)
# idx = pd.IndexSlice
X_symbol = X.loc[pd.IndexSlice[:, [symbol.ID.ToString()]], :]
y_symbol = y.loc[X_symbol.index]
# we're also adding ahistory of returns, which we pass on to the model to calculate kelly sizes upon Training
returns_symbol = returns.loc[X_symbol.index]
model = EnsembleModel(self.algo)
model.Train(X_symbol, y_symbol, returns_symbol)
if model.models:
# every time the model is trained we take the mean value of all num_iter models of this symbol. That's going to be the kelly size we'll use as weight when creating insights
cleanlist = [i.kelly_size for i in model.models if not math.isnan(i.kelly_size)]
self.kelly_size[symbol] = statistics.fmean(cleanlist) if cleanlist else 0
# we're also grabbing the mean values for average wins and loss for the symbol as we might want to use those for the MLFinLab bet sizing
cleanlist = [i.avg_win for i in model.models if not math.isnan(i.avg_win)]
self.avg_win[symbol] = statistics.fmean(cleanlist) if cleanlist else 0
cleanlist = [i.avg_loss for i in model.models if not math.isnan(i.avg_loss)]
self.avg_loss[symbol] = statistics.fmean(cleanlist) if cleanlist else 0
else:
self.kelly_size[symbol] = 0
self.avg_win[symbol] = 0
self.avg_loss[symbol] = 0
self.algo.Error("no models available ")
except Exception as e:
self.algo.Log('Unexpected error trying to build models:' + str(e))
raise
return model
def TrainMetaModel(self, df, symbol):
X, y, labels_index, triple_barrier_events = self.GetXyforMetaModel(df, symbol,1)
X = X.loc[labels_index, :]
X_training_validation = X
y_training_validation = y
X_train, X_validate, y_train, y_validate = train_test_split(X_training_validation, y_training_validation,
test_size=0.15, shuffle=False)
train_df = pd.concat([y_train, X_train], axis=1, join='inner').dropna()
# Upsample the training data to have a 50 - 50 split
# https://elitedatascience.com/imbalanced-classes
if len(train_df[train_df['bin'] == 0]) > len(train_df[train_df['bin'] == 1]):
majority = train_df[train_df['bin'] == 0]
minority = train_df[train_df['bin'] == 1]
else:
majority = train_df[train_df['bin'] == 1]
minority = train_df[train_df['bin'] == 0]
if not minority.empty:
new_minority = resample(minority,
replace=True, # Sample with replacement
n_samples=majority.shape[0], # To match majority class
random_state=42)
else:
self.algo.Debug(str(self.algo.Time)+" MINORITY EMPTY Majority: "+ str(len(majority)))
new_minority = minority
train_df = pd.concat([majority, new_minority])
train_df = shuffle(train_df, random_state=42)
# Create training data
y_train = train_df['bin']
X_train= train_df.loc[:, train_df.columns != 'bin']
n_estimator, depth = 256, 7
c_random_state = 42
rf = RandomForestClassifier(max_depth=depth, n_estimators=n_estimator,
criterion='entropy', random_state=c_random_state)
rf.fit(X_train, y_train.values.ravel())
return rf, triple_barrier_events
#region imports
from AlgorithmImports import *
#endregion
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd
class ClassifierModel():
def __init__(self, algo):
self.algo = algo
self.model = None
self.params = None
self.test_score = None
self.test_dist = None
self.threshold = None
# Train the model
def Train(self, X, y, params):
self.params = params
self.params['class_weight'] = self.GetClassWeight(y)
self.model = ExtraTreesClassifier(**self.params)
self.model.fit(X, y)
self.test_dist = self.model.predict_proba(X)[:, 1]
# Return prediction as a +/- Z-Score of the prediction from the the threshold
def Predict(self, X):
#self.algo.Debug(f'Number of columns before pca: {X.shape[1]}')
idx = X.index
#X = np.nan_to_num(X, nan=0, posinf=0, neginf=0)
probs = pd.Series(self.model.predict_proba(X)[:, 1])
d = self.test_dist
return (probs[0] - self.threshold) / d.std()
def GetClassWeight(self, y_train):
pos = y_train.sum()/(len(y_train))
neg = 1 - pos
pw = neg/pos
nw = pos/neg
return {0:nw,1:pw}#region imports
from AlgorithmImports import *
#endregion
from sklearn.ensemble import ExtraTreesClassifier
from scipy.stats.mstats import gmean
import numpy as np
import pandas as pd
import math
from sklearn.metrics import auc,roc_curve,precision_recall_curve, roc_auc_score, accuracy_score
from model import ClassifierModel
class ModelOptimizer():
def __init__(self, algo):
self.algo = algo
self.validation_score = 0
self.test_score = 0
self.test_dist = None
self.threshold = None
def BuildModels(self, X, y, returns):
# Need to continue to play with min samples split and estimators and maybe class weights
params = {'random_state':0,'n_estimators': self.algo.n_estimators, 'min_samples_split': self.algo.min_samples_split,
'class_weight' : {0:1,1:1},
'max_features': 'auto', 'max_depth': 3, 'criterion': 'gini', 'bootstrap': True}
# Train and validate using walk forward validation
max_score = -1
max_y = None
max_probs = None
num_iter = self.algo.num_iter
num_test_records = self.algo.num_test_records
num_records = len(X)
num_train_records = num_records - num_test_records
batch_size = 4
models = []
results = []
# Iterate ove the dataset and create a number (num_iter) of models.
trendtrades = [True] * (num_test_records-1)
for i in range(0, num_iter):
probs = []
y_test_all = []
returns_test_all = []
# closes_test_all = []
end_idx = num_records
# This is important. Copy params so each model keeps a distinct copy with it's own random seed
model_params = params.copy()
model_params['random_state']= i
# Loop through and do walk forward validation
j = num_train_records
while j < end_idx:
# Add the next segment of data
idx = j + batch_size
if idx >= end_idx:
idx = end_idx-1
X_train, X_test = X[0:j], X[j:idx]
y_train, y_test = y[0:j], y[j:idx]
returns_train, returns_test = returns[0:j], returns[j:idx]
j = j + batch_size
# Set the class weight based positives vs negatives
model_params['class_weight'] = self.get_class_weights(y_train)
# Train the model
clf = ExtraTreesClassifier(**model_params)
clf.fit(X_train, y_train)
# Predict using the model
p = pd.Series(clf.predict_proba(X_test)[:, 1])
# Add the predicions
probs.extend(p)
y_test_all.extend(y_test)
returns_test_all.extend(returns_test)
# Build model on all the data
model = ClassifierModel(self.algo)
model.Train(X, y, model_params)
# Since each models predictive results tend to skew, we calculate a threshold for what is a positive result
model.threshold = self.get_threshold(pd.Series(y), model.test_dist)
# Give the model a score for use in weighting models
y_pred = probs > model.threshold
score = self.score_results(y_test_all, probs, model.threshold)
model.test_score = score
# add win/loss stats as properties tothe model, so they can be used in the Alpha Model for bet sizing
model.test_y = y_test_all
model.test_returns = returns_test_all
model.pred_y = y_pred
model.kelly_size, model.avg_win, model.avg_loss = self.kelly_size(y_test_all, y_pred, returns_test_all, trendtrades)
models.append(model)
return models
# Calculate the model threshold for predicting positives
def get_threshold(self, y_true, probs):
# calculate percent positive
pos = y_true.sum()/(len(y_true))
# use that percent as threshold cutoff
return sorted(probs, reverse=True)[int(round(len(probs)*pos))]
def weighted_score(self, y_true, probs):
# There are two ways we want to weight a prediction
# 1. More recent predictions are weighted more heavily
# 2. The larger the prediction value is weighted more heavily (positive or negative)
y_test_all = np.asarray(y_true)
probs_all = pd.Series(probs)
splits = 6
length = math.floor(len(probs_all)/splits)
start = 0
end = length-1
scores = []
for i in range(0,splits):
y_test = y_test_all[start:end]
if y_test.sum() != 0:
probs = probs_all[start:end]
precision, recall, threshold = precision_recall_curve(y_test, probs)
pauc = auc(recall, precision)
if math.isnan(pauc):
pauc = 0
scores.append(pauc*(1+i/10))
end = end + length
start = start + length
if (end >= len(probs_all)):
end = len(probs_all)-1
return gmean(scores)
def kelly_size(self, y_true, y_pred, returns, trendtrades):
# calculate the symbol's kelly size based on the predictions of the model
df = pd.DataFrame({'y_true':y_true, 'y_pred':y_pred, 'returns': returns, 'trends': trendtrades})
trades = df[(df['y_pred']) & (df['trends'])]
wins = df[(df['y_true']) & (df['y_pred']) & (df['trends'])]
losses = df[(df['y_true'] == 0) & (df['y_pred']) & (df['trends'])]
win_rate = len(wins)/len(trades)
loss_rate = 1-win_rate
avg_win = wins['returns'].mean()
avg_loss = -losses['returns'].mean()
# used two different ways to calculate the Kelly size. (win_rate/avg_loss - loss_rate/avg_win) isn't the textbook Kelly formula, but it performed better
# return the kelly size, but also average win and loss separately so it can be used for the MLFinLab bet sizing.
return (win_rate/avg_loss - loss_rate/avg_win), avg_win, avg_loss
# return win_rate - (loss_rate/(avg_win/avg_loss))
def score_results(self, y_true, probs, threshold):
y_pred = probs > threshold
return accuracy_score(y_true, y_pred)
def get_class_weights(self, y):
# Calculate class weights
pos = y.sum()/(len(y))
neg = 1 - pos
pw = neg/pos
nw = pos/neg
return {0:nw,1:pw}
#region imports
from AlgorithmImports import *
#endregion
from QuantConnect.Algorithm.Framework.Risk import RiskManagementModel
# bracket risk model class
class BracketRiskModel(RiskManagementModel):
'''Creates a trailing stop loss for the maximumDrawdownPercent value and a profit taker for the maximumUnrealizedProfitPercent value'''
def __init__(self, maximumDrawdownPercent = 0.05, maximumUnrealizedProfitPercent = 0.05):
self.maximumDrawdownPercent = -abs(maximumDrawdownPercent)
self.trailingHighs = dict()
self.maximumUnrealizedProfitPercent = abs(maximumUnrealizedProfitPercent)
self.liquidated = set()
def ManageRisk(self, algorithm, targets):
riskAdjustedTargets = list()
for kvp in algorithm.Securities:
symbol = kvp.Key
security = kvp.Value
# Remove if not invested
if not security.Invested:
self.trailingHighs.pop(symbol, None)
continue
pnl = security.Holdings.UnrealizedProfitPercent
if pnl > self.maximumUnrealizedProfitPercent or security.Symbol in self.liquidated:
# liquidate
algorithm.Debug(f"Profit Taken: {security.Symbol}")
algorithm.Log(f"Profit Taken: {security.Symbol}")
riskAdjustedTargets.append(PortfolioTarget(security.Symbol, 0))
if algorithm.Securities[security.Symbol].Invested:
self.liquidated.add(security.Symbol)
algorithm.Log(f"Liquidating {security.Symbol}")
return riskAdjustedTargets
# Add newly invested securities
if symbol not in self.trailingHighs:
self.trailingHighs[symbol] = security.Holdings.AveragePrice # Set to average holding cost
continue
# Check for new highs and update - set to tradebar high
if self.trailingHighs[symbol] < security.High:
self.trailingHighs[symbol] = security.High
continue
# Check for securities past the drawdown limit
securityHigh = self.trailingHighs[symbol]
drawdown = (security.Low / securityHigh) - 1
if drawdown < self.maximumDrawdownPercent or security.Symbol in self.liquidated:
# liquidate
algorithm.Debug(f"Losses Taken: {security.Symbol}")
algorithm.Log(f"Losses Taken: {security.Symbol}")
riskAdjustedTargets.append(PortfolioTarget(symbol, 0))
if algorithm.Securities[security.Symbol].Invested:
self.liquidated.add(security.Symbol)
algorithm.Log(f"Liquidating {security.Symbol}")
return riskAdjustedTargets
class TrailingStopRiskManagementModelLiquidation(RiskManagementModel):
'''Provides an implementation of IRiskManagementModel that limits the maximum possible loss
measured from the highest unrealized profit'''
def __init__(self, maximumDrawdownPercent = 0.05):
'''Initializes a new instance of the TrailingStopRiskManagementModel class
Args:
maximumDrawdownPercent: The maximum percentage drawdown allowed for algorithm portfolio compared with the highest unrealized profit, defaults to 5% drawdown'''
self.maximumDrawdownPercent = abs(maximumDrawdownPercent)
self.trailingAbsoluteHoldingsState = dict()
self.liquidated = set()
def ManageRisk(self, algorithm, targets):
'''Manages the algorithm's risk at each time step
Args:
algorithm: The algorithm instance
targets: The current portfolio targets to be assessed for risk'''
riskAdjustedTargets = list()
for kvp in algorithm.Securities:
symbol = kvp.Key
security = kvp.Value
# Remove if not invested
if not security.Invested:
self.trailingAbsoluteHoldingsState.pop(symbol, None)
continue
position = PositionSide.Long if security.Holdings.IsLong else PositionSide.Short
absoluteHoldingsValue = security.Holdings.AbsoluteHoldingsValue
trailingAbsoluteHoldingsState = self.trailingAbsoluteHoldingsState.get(symbol)
# Add newly invested security (if doesn't exist) or reset holdings state (if position changed)
if trailingAbsoluteHoldingsState == None or position != trailingAbsoluteHoldingsState.position:
self.trailingAbsoluteHoldingsState[symbol] = trailingAbsoluteHoldingsState = self.HoldingsState(position, security.Holdings.AbsoluteHoldingsCost)
trailingAbsoluteHoldingsValue = trailingAbsoluteHoldingsState.absoluteHoldingsValue
# Check for new max (for long position) or min (for short position) absolute holdings value
if ((position == PositionSide.Long and trailingAbsoluteHoldingsValue < absoluteHoldingsValue) or
(position == PositionSide.Short and trailingAbsoluteHoldingsValue > absoluteHoldingsValue)):
self.trailingAbsoluteHoldingsState[symbol].absoluteHoldingsValue = absoluteHoldingsValue
continue
drawdown = abs((trailingAbsoluteHoldingsValue - absoluteHoldingsValue) / trailingAbsoluteHoldingsValue)
if self.maximumDrawdownPercent < drawdown or security.Symbol in self.liquidated:
self.trailingAbsoluteHoldingsState.pop(symbol, None)
# liquidate
riskAdjustedTargets.append(PortfolioTarget(symbol, 0))
if algorithm.Securities[security.Symbol].Invested:
self.liquidated.add(security.Symbol)
algorithm.Log(f"Liquidating {security.Symbol}")
return riskAdjustedTargets
class HoldingsState:
def __init__(self, position, absoluteHoldingsValue):
self.position = position
self.absoluteHoldingsValue = absoluteHoldingsValue