| Overall Statistics |
|
Total Trades 1 Average Win 0% Average Loss 0% Compounding Annual Return 4.407% Drawdown 20.200% Expectancy 0 Net Profit 5.535% Sharpe Ratio 0.343 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0.234 Beta -8.841 Annual Standard Deviation 0.166 Annual Variance 0.028 Information Ratio 0.223 Tracking Error 0.166 Treynor Ratio -0.006 Total Fees $1.84 |
# same error as degue!!!
# should write to QC for checking!!!
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Indicators import *
from QuantConnect.Data.Market import TradeBar
class RollingWindowAlgorithm(QCAlgorithm):
def Initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.SetStartDate(2018,1,1) #Set Start Date
self.SetEndDate(2019,4,1) #Set End Date
self.SetCash(100000) #Set Strategy Cash
# Find more symbols here: http://quantconnect.com/data
self.AddEquity("SPY", Resolution.Daily)
# Creates a Rolling Window indicator to keep the 2 TradeBar
self.window = RollingWindow[TradeBar](2) # For other security types, use QuoteBar
# Creates an indicator and adds to a rolling window when it is updated
self.sma = self.SMA("SPY", 5)
self.sma.Updated += self.SmaUpdated
self.smaWin = RollingWindow[IndicatorDataPoint](5)
# zc add on
stockPlot = Chart("Trade Plot")
stockPlot.AddSeries(Series("Price", SeriesType.Line, 0))
self.AddChart(stockPlot)
self.lastPrice = 0
def SmaUpdated(self, sender, updated):
'''Adds updated values to rolling window'''
self.smaWin.Add(updated)
def OnData(self, data):
'''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.'''
# Add SPY TradeBar in rollling window
self.window.Add(data["SPY"])
# Wait for windows to be ready.
if not (self.window.IsReady and self.smaWin.IsReady): return
currBar = self.window[0] # Current bar had index zero.
pastBar = self.window[1] # Past bar has index one.
self.Log("Price: {0} -> {1} ... {2} -> {3}".format(pastBar.Time, pastBar.Close, currBar.Time, currBar.Close))
# zc add on
self.lastPrice = currBar.Close
self.Plot("Trade Plot", "Price", self.lastPrice)
currSma = self.smaWin[0] # Current SMA had index zero.
pastSma = self.smaWin[self.smaWin.Count-1] # Oldest SMA has index of window count minus 1.
self.Log("SMA: {0} -> {1} ... {2} -> {3}".format(pastSma.Time, pastSma.Value, currSma.Time, currSma.Value))
if not self.Portfolio.Invested and currSma.Value > pastSma.Value:
self.SetHoldings("SPY", 1)from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
import numpy as np
import decimal as d
from datetime import timedelta, datetime
class CustomChartingAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2018,1,1)
self.SetEndDate(2019,4,1)
self.SetCash(100000)
self.AddEquity("SPY", Resolution.Daily)
# In your initialize method:
# Chart - Master Container for the Chart:
stockPlot = Chart("Trade Plot")
# On the Trade Plotter Chart we want 3 series: trades and price:
stockPlot.AddSeries(Series("Buy", SeriesType.Scatter, 0))
stockPlot.AddSeries(Series("Sell", SeriesType.Scatter, 0))
stockPlot.AddSeries(Series("Price", SeriesType.Line, 0))
self.AddChart(stockPlot)
self.fastMA = 0
self.slowMA = 0
self.lastPrice = 0
self.resample = datetime.min
self.resamplePeriod = (self.EndDate - self.StartDate) / 2000
def OnData(self, slice):
if slice["SPY"] is None: return
self.lastPrice = slice["SPY"].Close
if self.fastMA == 0: self.fastMA = self.lastPrice
if self.slowMA == 0: self.slowMA = self.lastPrice
self.fastMA = (0.01 * self.lastPrice) + (0.99 * self.fastMA)
self.slowMA = (0.001 * self.lastPrice) + (0.999 * self.slowMA)
if self.Time > self.resample:
self.resample = self.Time + self.resamplePeriod
# On the 5th days when not invested buy:
if not self.Portfolio.Invested and self.Time.day % 13 == 0:
self.Order("SPY", (int)(self.Portfolio.MarginRemaining / self.lastPrice))
self.Plot("Trade Plot", "Buy", self.lastPrice)
elif self.Time.day % 21 == 0 and self.Portfolio.Invested:
self.Plot("Trade Plot", "Sell", self.lastPrice)
self.Liquidate()
def OnEndOfDay(self):
#Log the end of day prices:
self.Plot("Trade Plot", "Price", self.lastPrice)