| Overall Statistics |
|
Total Trades 1013 Average Win 1.45% Average Loss -1.40% Compounding Annual Return 12.340% Drawdown 20.100% Expectancy 0.221 Net Profit 345.663% Sharpe Ratio 0.851 Loss Rate 40% Win Rate 60% Profit-Loss Ratio 1.03 Alpha 0.065 Beta 0.645 Annual Standard Deviation 0.149 Annual Variance 0.022 Information Ratio 0.281 Tracking Error 0.11 Treynor Ratio 0.196 Total Fees $8944.74 |
# Derek M Tishler - 2017
# https://tishlercapital.com/
# Basic TensorFlow Softmax Classification Example
# https://www.tensorflow.org/get_started/mnist/beginners
# https://www.tensorflow.org/get_started/mnist/pros
import random
import numpy as np
import pandas as pd
import tensorflow as tf
seed = 1
random.seed(seed)
np.random.seed(seed)
tf.set_random_seed(seed)
class BasicTensorFlowAlgorithmSingleAssetClassifier(QCAlgorithm):
def Initialize(self):
# init the tensorflow model object
self.model = Model()
# setup backtest
self.SetStartDate(2005,1,1) #Set Start Date
self.SetEndDate(2017,11,1) #Set End Date
self.SetCash(100000) #Set Strategy Cash
# Find more symbols here: http://quantconnect.com/data
self.symbol = "SPY"
self.model.symbol = self.symbol
self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin)
self.AddEquity(self.symbol, Resolution.Minute)
sPlot = Chart('Strategy Equity')
#sPlot.AddSeries(Series('Signal', SeriesType.Line, 1))
sPlot.AddSeries(Series('Model_Accuracy', SeriesType.Line, 2)) #Only for axis title override
sPlot.AddSeries(Series('Train_Model_Accuracy', SeriesType.Line, 2))
sPlot.AddSeries(Series('Test_Model_Accuracy', SeriesType.Line, 2))
sPlot.AddSeries(Series('Loss', SeriesType.Line, 3)) #Only for axis title override
sPlot.AddSeries(Series('Train_Model_Cross_Entropy_x100', SeriesType.Line, 3))
sPlot.AddSeries(Series('Test_Model_Cross_Entropy_x100', SeriesType.Line, 3))
self.AddChart(sPlot)
# Our big history call, only done once to save time
self.model.hist_data = self.History([self.symbol,], self.model.warmup_count, Resolution.Daily).astype(np.float32)
# Flag to know when to start gathering history in OnData or Rebalance
self.do_once = True
# prevent order spam by tracking current weight target and comparing against new targets
self.target = 0.0
# We are forecasting and trading on open-to-ooen price changes on a daily time scale. So work every morning.
self.Schedule.On(self.DateRules.EveryDay(self.symbol), \
self.TimeRules.AfterMarketOpen(self.symbol), \
Action(self.Rebalance))
def Rebalance(self):
# store current price for model to use at end of historical data
self.model.current_price = float(self.Securities[self.symbol].Price)
# Accrew history over time vs making huge, slow history calls each step.
if not self.do_once:
new_hist = self.History([self.symbol,], 1, Resolution.Daily).astype(np.float32)
self.model.hist_data = self.model.hist_data.append(new_hist).iloc[1:] #append and pop stack
else:
self.do_once = False
# Prepare our data now that it has been updated
self.model.preproessing()
# Perform a number of training steps with the new data
self.model.train(self)
# Using the latest input feature set, lets get the predicted assets expected to make the desired profit by the next open
signal = self.model.predict(self)
# Some charting of model metrics
self.Checkpoint()
# In case of repeated forecast, lets skip rebalance and reduce fees/orders
if signal != self.target:
# track our current target to allow for above filter
self.target = signal
# rebalance
self.SetHoldings(self.symbol, self.target)#, liquidateExistingHoldings = True)
def Checkpoint(self):
# Some custom charts so better see model performance over time (and see if our training is even progressing)
#self.Plot('Strategy Equity','Signal', self.target)
self.Plot('Strategy Equity','Train_Model_Accuracy', 100.*self.model.train_accuracy)
self.Plot('Strategy Equity','Test_Model_Accuracy', 100.*self.model.test_accuracy)
self.Plot('Strategy Equity','Train_Model_Cross_Entropy_x100', 100.*self.model.train_ce)
self.Plot('Strategy Equity','Test_Model_Cross_Entropy_x100', 100.*self.model.test_ce)
# Once file io, perform model checkpointing
# pass
class Model():
def __init__(self):
# Number of inputs for training (will loose 1)
self.eval_lookback = 252*4 + 1# input batch size will be eval_lookback+n_features-1 #252*4+1
# We will feed in the past n open-to-open price changes
self.n_features = 15 #15
# How much historical data do we need?
self.warmup_count = self.eval_lookback + self.n_features
# define our tensorflow model/network
self.network_setup()
# We track the current price(rebalance at open) to use at end of history
self.current_price = None
def network_setup(self):
# Tensorflow Turorial does a great job(with illustrations) so comments left out here mostly: https://www.tensorflow.org/get_started/mnist/pros
self.sess = tf.InteractiveSession()
# Our feed dicts pipe data into these tensors on runs/evals. Input layer and correct-labels.
self.x = tf.placeholder(tf.float32, shape=[None, self.n_features])
self.y_ = tf.placeholder(tf.float32, shape=[None, 2])
# The brain of our networkk, the weights and biases. Nice and simple for a linear softmax network.
self.W = tf.Variable(tf.zeros([self.n_features,2]))
self.b = tf.Variable(tf.zeros([2]))
# The actual model is a painfully simple linear regressor
self.y = tf.matmul(self.x,self.W) + self.b
# output layer
self.y_pred = tf.nn.softmax(self.y)
# loss
self.cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=self.y_, logits=self.y))
# For fun we use AdamOptimizer instead of basic vanilla GradientDescentOptimizer.
self.train_step = tf.train.AdamOptimizer(1e-2).minimize(self.cross_entropy)
# metric ops
self.correct_prediction = tf.equal(tf.argmax(self.y_pred,1), tf.argmax(self.y_,1))
self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32))
# This is done later vs Tensorflow Tutorial because of AdamOptimizer usage, which needs its own vars to be init'ed
self.sess.run(tf.global_variables_initializer())
def preproessing(self):
# Inout features:
# We are using a sliding window of past change in open prices per asset to act as our input "image".
#By no means a good idea to discover alpha...
all_data = np.append(self.hist_data.open.values.flatten().astype(np.float32), self.current_price)
features = []
labels = []
for i in range(self.n_features+1, len(all_data)-1):
# input is change in price
features.append( np.diff(all_data[i-self.n_features-1:i].copy()) )
# label is change in price from last day in input to the next day
dp = 100.*(all_data[i+1]-all_data[i])/all_data[i]
if dp > 0.0:
dp = 1
else:
dp = 0
labels.append(dp)
features = np.array(features)
labels = np.array(labels)
# convert to one hot for tensorflow
oh = np.zeros((len(labels),2))
oh[np.arange(len(labels)),labels] = 1.0
labels = oh
# Test train split. unfortunate to loose recent data, but need data not seen ever by train set.
split_len = int(len(labels)*0.05)
self.X_train = features[:-split_len]
self.X_test = features[-split_len:]
self.y_train = labels[:-split_len]
self.y_test = labels[-split_len:]
def train(self, algo_context):
# Perform training step(s) and check train accuracy. This is really lame, use a test/train split and measure OOS data for good info about test/validation accuracy.
for _ in range(100):
#batch = np.random.permutation(np.arange(len(self.X_train)))[:100] #can switch to mini batch easily if need be
self.train_step.run(session=self.sess, feed_dict={self.x: self.X_train, self.y_: self.y_train})
# Collect some metrics for charting
self.train_accuracy = self.accuracy.eval(session=self.sess, feed_dict={self.x: self.X_train, self.y_: self.y_train})
self.test_accuracy = self.accuracy.eval(session=self.sess, feed_dict={self.x: self.X_test, self.y_: self.y_test})
self.train_ce = self.cross_entropy.eval(session=self.sess, feed_dict={self.x: self.X_train, self.y_: self.y_train})
self.test_ce = self.cross_entropy.eval(session=self.sess, feed_dict={self.x: self.X_test, self.y_: self.y_test})
#algo_context.Log("Train Accuracy: %0.5f %0.5f"%(self.train_accuracy,self.test_accuracy)) # commented out to reduce log
def predict(self, algo_context):
# Perform inference
pred_feat = np.append(self.hist_data.open.values.flatten().astype(np.float32), self.current_price)[-self.n_features-1:]
pred_feat = np.diff(pred_feat)
pred_proba = self.y_pred.eval(session=self.sess, feed_dict={self.x: [pred_feat]})
#algo_context.Log("Forecast: Long p: %0.3f\tCashh p: %0.3f"%(pred_proba[0][0], pred_proba[0][1])) # commented out to reduce log
self.current_forecast = pred_proba[0]
# Return if probability suggests Cash or Long class
return np.argmax(pred_proba[0])
"""
# Short or Long, may want to enable liquidate in SetHoldings?
if pred_proba[0][0] > 0.5:
return -1.
else:
return 1."""