| Overall Statistics |
|
Total Orders 54 Average Win 20.22% Average Loss -11.12% Compounding Annual Return 105.089% Drawdown 13.100% Expectancy 0.301 Start Equity 1000000 End Equity 1493984 Net Profit 49.398% Sharpe Ratio 2.491 Sortino Ratio 2.166 Probabilistic Sharpe Ratio 80.673% Loss Rate 54% Win Rate 46% Profit-Loss Ratio 1.82 Alpha 0 Beta 0 Annual Standard Deviation 0.258 Annual Variance 0.067 Information Ratio 2.704 Tracking Error 0.258 Treynor Ratio 0 Total Fees $6612.19 Estimated Strategy Capacity $630000.00 Lowest Capacity Asset VX YMOVLKIPJ10P Portfolio Turnover 20.36% |
#region imports
from AlgorithmImports import *
#endregion
general_setting = {
"lookback": 100,
"lookback_RESOLUTION": "HOUR",
"ratio_method": "Regression",
"Take_Profit_pct": 0.3,
"Stop_Loss_pct": 0.08,
"p_value_threshold_entry": 0.0001,
"p_value_threshold_exit": 0.00001,
"rollover_days": 2,
}from AlgorithmImports import *
from QuantConnect.DataSource import *
from config import general_setting
import pickle
import numpy as np
import pandas as pd
import math
import statsmodels.api as sm
from pandas.tseries.offsets import BDay
from pykalman import KalmanFilter
from statsmodels.tsa.stattools import coint, adfuller
class CalendarSpread(QCAlgorithm):
def initialize(self) -> None:
self.SetTimeZone(TimeZones.NEW_YORK)
self.set_start_date(2024, 4, 1)
# self.set_end_date(2024,9,10)
self.set_cash(1000000)
self.universe_settings.asynchronous = True
self.zscore_df = {}
self.note1_price = {}
self.note2_price = {}
# Requesting Gold data
future_gold = self.add_future(Futures.Metals.GOLD, resolution = Resolution.HOUR)
future_gold.set_filter(0, 180)
self.future_gold_symbol = future_gold.symbol
self.first_gold_contract = None
self.second_gold_contract = None
self.third_gold_contract = None
self.first_gold_expiry = None
self.second_gold_expiry = None
self.third_gold_expiry = None
# # Requesting Crude Oil data
future_CL = self.add_future(Futures.Energy.CRUDE_OIL_WTI, resolution = Resolution.HOUR)
future_CL.set_filter(0, 180)
self.future_CL_symbol = future_CL.symbol
self.first_CL_contract = None
self.second_CL_contract = None
self.third_CL_contract = None
self.first_CL_expiry = None
self.second_CL_expiry = None
self.third_CL_expiry = None
# # Requesting Y_10_TREASURY_NOTE data
# future_BTC = self.add_future(Futures.Currencies.BTC, resolution = Resolution.HOUR)
# future_BTC.set_filter(0, 180)
# self.future_BTC_symbol = future_BTC.symbol
# self.first_BTC_contract = None
# self.second_BTC_contract = None
# self.third_BTC_contract = None
# self.first_BTC_expiry = None
# self.second_BTC_expiry = None
# self.third_BTC_expiry = None
# self.trade_signal = False
# Requesting data
future_eur = self.add_future(Futures.Currencies.EUR, resolution = Resolution.HOUR)
future_eur.set_filter(0, 180)
self.future_eur_symbol = future_eur.symbol
self.first_eur_contract = None
self.second_eur_contract = None
self.third_eur_contract = None
self.first_eur_expiry = None
self.second_eur_expiry = None
self.third_eur_expiry = None
# Requesting data
# Futures.Currencies.EUR
# Futures.Currencies.MICRO_EUR
# Futures.Financials.Y_2_TREASURY_NOTE
# Futures.Financials.Y_5_TREASURY_NOTE
# Futures.Indices.MICRO_NASDAQ_100_E_MINI
# Futures.Indices.SP_500_E_MINI
# Futures.Indices.VIX
future_es = self.add_future(Futures.Indices.VIX, resolution = Resolution.HOUR, extended_market_hours = True)
self.set_brokerage_model(BrokerageName.INTERACTIVE_BROKERS_BROKERAGE, AccountType.MARGIN)
future_es.set_filter(0, 180)
self.future_es_symbol = future_es.symbol
self.first_es_contract = None
self.second_es_contract = None
self.third_es_contract = None
self.first_es_expiry = None
self.second_es_expiry = None
self.third_es_expiry = None
self.lookback = general_setting['lookback']
self.p_threshold_entry = general_setting['p_value_threshold_entry']
self.p_threshold_exit = general_setting['p_value_threshold_exit']
self.rollover_days = general_setting['rollover_days']
self.wt_1 = None
self.wt_2 = None
self.roll_signal = False
self.Margin_Call = False
self.prev_cap = None
self.large_diff = None
self.backwardation = False
def stats(self):
# Request Historical Data
df_es1 = self.History(self.first_es_contract.symbol, timedelta(self.lookback), Resolution.HOUR).rename(columns = {'close':'first'})
df_es2 = self.History(self.second_es_contract.symbol, timedelta(self.lookback), Resolution.HOUR).rename(columns = {'close':'second'})
# df_Gold3 = self.History(self.third_gold_contract.symbol,timedelta(self.lookback), Resolution.HOUR).rename(columns = {'close':'third'})
df_merge = pd.merge(df_es1, df_es2, on = ['time'], how = 'inner')
# df_Gold1 = df_Gold1["close"]
# df_Gold2 = df_Gold2["close"]
# df_Gold3 = df_Gold3["close"]
# self.debug(f"{len(df_Gold1)}, {len(df_Gold2)}")
es1_log = np.array(df_merge['first'].apply(lambda x: math.log(x)))
es2_log = np.array(df_merge['second'].apply(lambda x: math.log(x)))
# Gold3_log = np.array(df_Gold3.apply(lambda x: math.log(x)))
# self.debug(f"{len(Gold1_log)}, {len(Gold2_log)}")
# 1st & 2nd
# spread_series = df_merge['second'] - df_merge['first']
# mean = spread_series.mean()
# sigma = spread_series.std()
# last_spread = spread_series[-1]
X1 = sm.add_constant(es1_log)
Y1 = es2_log
model1 = sm.OLS(Y1, X1)
results1 = model1.fit()
sigma1 = math.sqrt(results1.mse_resid)
slope1 = results1.params[1]
intercept1 = results1.params[0]
res1 = results1.resid
zscore1 = res1/sigma1
adf1 = adfuller(res1)
p_value1 = adf1[1]
# spread = res1[len(res1)-1]
df_merge['spread'] = df_merge['second'] - df_merge['first']
spread = np.array(df_merge['spread'])
# test_passed1 = p_value1 <= self.p_threshold
# self.debug(f"p value is {p_value1}")
return [p_value1, zscore1, slope1, spread]
def on_data(self, slice: Slice) -> None:
# self.debug(f"{self.time}: self.Rollover is {self.roll_signal}, first expiry is {self.first_gold_expiry}")
# If backwardation
# Entry signal
# if self.time.minute == 0 or self.time.minute ==10 or self.time.minute == 20 or self.time.minute==30 or self.time.minute == 40 or self.time.minute == 50:
if self.roll_signal == False:
if not self.portfolio.Invested:
chain = slice.futures_chains.get(self.future_es_symbol)
if chain:
contracts = [i for i in chain ]
e = [i.expiry for i in contracts]
e = sorted(list(set(sorted(e, reverse = True))))
# e = [i.expiry for i in contracts if i.expiry- self.Time> timedelta(5)]
# self.debug(f"the first contract is {e[0]}, the length of e is {len(e)}")
# expiry = e[0]
try:
self.first_es_contract = [contract for contract in contracts if contract.expiry == e[0]][0]
self.second_es_contract = [contract for contract in contracts if contract.expiry == e[1]][0]
# self.third_gold_contract = [contract for contract in contracts if contract.expiry == e[2]][0]
self.first_es_expiry = e[0]
self.second_es_expiry = e[1]
# self.third_gold_expiry = e[2]
stats = self.stats()
self.zscore_df[self.time] = stats[1][-1]
self.note1_price[self.time] = self.Securities[self.first_es_contract.symbol].Price
self.note2_price[self.time] = self.Securities[self.second_es_contract.symbol].Price
sigma = stats[3].std()
mean = stats[3].mean()
last_spread = stats[3][-1]
self.debug(f'mean is {mean}, sigma is {sigma}, last_spread is {last_spread}')
# self.plot('z_score_plot','z_score',stats[1][-1] )
# self.plot('p_value_plot','p_value', stats[0])
# self.plot('p_value_plot','p_value', stats[0] )
# self.plot('spread_plot','spread', stats[3] )
# if (self.first_es_expiry.date() - self.time.date()).days > self.rollover_day:
self.trade_signal = True
# else:
# self.trade_signal = False
if self.trade_signal and ((self.first_es_expiry.date() - self.time.date()).days > self.rollover_days):
self.wt_1 = 1/(1+stats[2])
self.wt_2 = 1 - self.wt_1
# if self.Securities[self.first_es_contract.symbol].Price >= self.Securities[self.second_es_contract.symbol].Price:
# self.backwardation == True
# self.set_holdings(self.first_es_contract.symbol, -self.wt_1, tag = f'spread = mean + {round(n,2)}*sigma')
# self.set_holdings(self.second_es_contract.symbol, -self.wt_2, tag = f'spread = mean + {round(n,2)}*sigma')
# if stats[3]<0:
if last_spread > mean + 0.9*sigma:
n = (last_spread-mean)/sigma
self.set_holdings(self.first_es_contract.symbol, self.wt_1, tag = f'spread = mean + {round(n,2)}*sigma')
self.set_holdings(self.second_es_contract.symbol, -self.wt_2, tag = f'spread = mean + {round(n,2)}*sigma')
# self.set_holdings(self.first_es_contract.symbol, 04)
# self.set_holdings(self.second_es_contract.symbol, -0.4)
self.prev_cap = self.portfolio.total_portfolio_value
self.large_diff = True
# self.debug(f"enter position: z score is {stats[1][-1]}")
elif last_spread < mean - 0.85*sigma:
n = abs((last_spread-mean)/sigma)
self.set_holdings(self.first_es_contract.symbol, -self.wt_1, tag = f'spread < mean - {round(n,2)}*sigma')
self.set_holdings(self.second_es_contract.symbol, self.wt_2, tag = f'spread < mean - {round(n,2)}*sigma')
# self.set_holdings(self.first_es_contract.symbol, -0.4)
# self.set_holdings(self.second_es_contract.symbol, 0.4)
self.prev_cap = self.portfolio.total_portfolio_value
self.large_diff = False
# self.debug(f"enter position: z score is {stats[1][-1]}")
self.trade_signal = False
except:
return
else:
# exit signal
stats = self.stats()
self.zscore_df[self.time] = stats[1][-1]
self.note1_price[self.time] = self.Securities[self.first_es_contract.symbol].Price
self.note2_price[self.time] = self.Securities[self.second_es_contract.symbol].Price
sigma = stats[3].std()
mean = stats[3].mean()
last_spread = stats[3][-1]
self.plot('p_value_plot','p_value', stats[0])
self.plot('z_score_plot','z_score',stats[1][-1] )
# self.plot('spread_plot','spread', stats[3] )
self.debug(f'mean is {mean}, sigma is {sigma}, last_spread is {last_spread}')
if ((self.first_es_expiry.date() - self.time.date()).days <= self.rollover_days):
self.roll_signal = True
if self.portfolio.total_portfolio_value>= self.prev_cap:
self.liquidate(tag = 'rollover; Win')
else:
self.liquidate(tag = 'rollover; Loss')
self.prev_cap = None
self.large_diff = None
return
if self.prev_cap :
if self.portfolio.total_portfolio_value> 1.1 * self.prev_cap:
self.liquidate(tag = 'Take Profit')
self.prev_cap = None
self.large_diff = None
return
elif self.portfolio.total_portfolio_value< 0.93 * self.prev_cap:
self.liquidate(tag = 'Stop Loss')
self.prev_cap = None
self.large_diff = None
return
# if (last_spread < mean + 0 * sigma and self.large_diff == True)or (last_spread > mean - 0*sigma and self.large_diff == False):
# if self.portfolio.total_portfolio_value>= self.prev_cap:
# self.liquidate(tag = 'mean reversion; Win')
# else:
# self.liquidate(tag = 'mean reversion; Loss')
# self.prev_cap = None
# self.large_diff = None
# self.debug(f"exit position: z score is {stats[1][-1]}")
# roll over
else:
# chain = slice.futures_chains.get(self.future_symbol)
# if chain:
# contracts = [i for i in chain ]
# e = [i.expiry for i in contracts]
# e = sorted(list(set(sorted(e, reverse = True))))
# # e = [i.expiry for i in contracts if i.expiry- self.Time> timedelta(5)]
# # expiry = e[0]
# self.first_gold_contract = [contract for contract in contracts if contract.expiry == e[0]][0]
# self.second_gold_contract = [contract for contract in contracts if contract.expiry == e[1]][0]
# # self.third_gold_contract = [contract for contract in contracts if contract.expiry == e[2]][0]
# self.first_gold_expiry = e[0]
# self.second_gold_expiry = e[1]
stats = self.stats()
self.zscore_df[self.time] = stats[1][-1]
self.note1_price[self.time] = self.Securities[self.first_es_contract.symbol].Price
self.note2_price[self.time] = self.Securities[self.second_es_contract.symbol].Price
self.plot('z_score_plot','z_score',stats[1][-1] )
self.plot('p_value_plot','p_value', stats[0])
if self.first_es_expiry.date() < self.time.date():
self.roll_signal = False
if self.zscore_df:
df = pd.DataFrame.from_dict(self.zscore_df, orient='index',columns=['zscore'])
file_name = 'CalendarSpread/zscore_df'
self.object_store.SaveBytes(file_name, pickle.dumps(df))
if self.note1_price:
df = pd.DataFrame.from_dict(self.note1_price, orient='index',columns=['price1'])
file_name = 'CalendarSpread/note1_df'
self.object_store.SaveBytes(file_name, pickle.dumps(df))
if self.note2_price:
df = pd.DataFrame.from_dict(self.note2_price, orient='index',columns=['price2'])
file_name = 'CalendarSpread/note2_df'
self.object_store.SaveBytes(file_name, pickle.dumps(df))
# def on_securities_changed(self, changes: SecurityChanges) -> None:
# for security in changes.added_securities:
# # Historical data
# history = self.history(security.symbol, 10, Resolution.MINUTE)
# self.debug(f"We got {len(history)} from our history request for {security.symbol}")
def OnOrderEvent(self, orderEvent):
if orderEvent.Status != OrderStatus.Filled:
return
# Webhook Notification
symbol = orderEvent.symbol
price = orderEvent.FillPrice
quantity = orderEvent.quantity
# self.debug(f"SP500 Enhanced-Indexing Paper order update] \nSymbol: {symbol} \nPrice: {price} \nQuantity: {quantity}")
a = { "text": f"[Calendar Arbitrage Paper order update] \nSymbol: {symbol} \nPrice: {price} \nQuantity: {quantity}" }
payload = json.dumps(a)
self.notify.web("https://hooks.slack.com/services/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", payload)
def on_margin_call(self, requests):
self.debug('Margin Call is coming')
self.Margin_Call = True
a = { "text": f"[Calendar Spread Margin Call update]Margin Call is coming" }
payload = json.dumps(a)
self.notify.web("https://hooks.slack.com/services/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", payload)
return requests
def OnOrderEvent(self, orderEvent):
# self.Log(f'{orderEvent.OrderId}--{orderEvent.Status}--{orderEvent.quantity}')
if orderEvent.Status != OrderStatus.Filled:
return
if self.Margin_Call:
qty = orderEvent.quantity
symbol = orderEvent.symbol
self.Margin_Call = False
self.debug(f'Hit margin call, the qty is {qty}')
if symbol == self.first_es_contract.symbol:
self.debug(f'if come here, symbol is {symbol}, qty is {qty}')
self.market_order(self.second_es_contract.symbol, -qty)
if symbol == self.second_es_contract.symbol:
self.debug(f'if come here, symbol is {symbol}, qty is {qty}')
self.market_order(self.first_es_contract.symbol, -qty)
# self.liquidate(tag = 'margin call')
# region imports
from AlgorithmImports import *
import numpy as np
import pandas as pd
import math
import statsmodels.api as sm
from pandas.tseries.offsets import BDay
from pykalman import KalmanFilter
from statsmodels.tsa.stattools import coint, adfuller
# endregion
from config import general_setting
class BasicTemplateFuturesAlgorithm(QCAlgorithm):
def Initialize(self):
self.debug("start calendar spread algo")
self.SetStartDate(2023, 10, 8)
self.SetCash(1000000)
self.universe_settings.resolution = Resolution.MINUTE
# lookback frequency settings
self.lookback = general_setting['lookback']
self.lookback_RESOLUTION = general_setting['lookback_RESOLUTION']
self.enter = general_setting["enter_level"]
self.exit = general_setting["exit_level"]
# Subscribe and set our expiry filter for the futures chain
future1 = self.AddFuture(Futures.Metals.GOLD, resolution=Resolution.MINUTE)
future1.SetFilter(timedelta(0), timedelta(365))
# benchmark = self.AddEquity("SPY")
# self.SetBenchmark(benchmark.Symbol)
seeder = FuncSecuritySeeder(self.GetLastKnownPrices)
self.SetSecurityInitializer(lambda security: seeder.SeedSecurity(security))
self.gold1_contract = None
self.gold2_contract = None
self.gold3_contract = None
self.minute_counter = 0
self.Schedule.On(self.date_rules.every_day(), self.TimeRules.At(18,0), self.reset_minute_counter) # Check Take profit and STOP LOSS every minute
def reset_minute_counter(self):
self.minute_counter = 0
def stats(self, symbols, method="Regression"):
# lookback here refers to market hour, whereas additional extended-market-hour data are also included.
if self.lookback_RESOLUTION == "MINUTE":
df_Gold1 = self.History(symbols[0], self.lookback, Resolution.MINUTE)
df_Gold2 = self.History(symbols[1], self.lookback, Resolution.MINUTE)
df_Gold3 = self.History(symbols[2], self.lookback, Resolution.MINUTE)
elif self.lookback_RESOLUTION == "HOUR":
df_Gold1 = self.History(symbols[0], self.lookback, Resolution.HOUR)
df_Gold2 = self.History(symbols[1], self.lookback, Resolution.HOUR)
df_Gold3 = self.History(symbols[2], self.lookback, Resolution.HOUR)
else:
df_Gold1 = self.History(symbols[0], self.lookback, Resolution.DAILY)
df_Gold2 = self.History(symbols[1], self.lookback, Resolution.DAILY)
df_Gold3 = self.History(symbols[2], self.lookback, Resolution.DAILY)
if df_Gold1.empty or df_Gold2.empty:
return 0
df_Gold1 = df_Gold1["close"]
df_Gold2 = df_Gold2["close"]
df_Gold3 = df_Gold3["close"]
Gold1_log = np.array(df_Gold1.apply(lambda x: math.log(x)))
Gold2_log = np.array(df_Gold2.apply(lambda x: math.log(x)))
Gold3_log = np.array(df_Gold3.apply(lambda x: math.log(x)))
# Gold1 & Gold2 Regression and ADF test
X1 = sm.add_constant(Gold1_log)
Y1 = Gold2_log
model1 = sm.OLS(Y1, X1)
results1 = model1.fit()
sigma1 = math.sqrt(results1.mse_resid)
slope1 = results1.params[1]
intercept1 = results1.params[0]
res1 = results1.resid
zscore1 = res1/sigma1
adf1 = adfuller(res1)
p_value1 = adf1[1]
test_passed1 = p_value1 <= general_setting['p_value_threshold']
self.debug(f"p value is {p_value1}")
# p 越小越显著
# Gold1 & Gold3 Regression and ADF test
X2 = sm.add_constant(Gold1_log)
Y2 = Gold3_log
model2 = sm.OLS(Y2, X2)
results2 = model2.fit()
sigma2 = math.sqrt(results2.mse_resid)
slope2 = results2.params[1]
intercept2 = results2.params[0]
res2 = results2.resid
zscore2 = res2/sigma2
adf2 = adfuller(res2)
p_value2 = adf2[1]
test_passed2 = p_value2 <= general_setting['p_value_threshold']
# Gold1 & Gold3 Regression and ADF test
X3 = sm.add_constant(Gold2_log)
Y3 = Gold3_log
model3 = sm.OLS(Y3, X3)
results3 = model3.fit()
sigma3 = math.sqrt(results3.mse_resid)
slope3 = results3.params[1]
intercept3 = results3.params[0]
res3 = results3.resid
zscore3 = res3/sigma3
adf3 = adfuller(res3)
p_value3 = adf3[1]
test_passed3 = p_value3 <= general_setting['p_value_threshold']
# Kalman Filtering to get parameters
if method == "Kalman_Filter":
obs_mat = sm.add_constant(Gold1_log, prepend=False)[:, np.newaxis]
trans_cov = 1e-5 / (1 - 1e-5) * np.eye(2)
kf = KalmanFilter(n_dim_obs=1, n_dim_state=2,
initial_state_mean=np.ones(2),
initial_state_covariance=np.ones((2, 2)),
transition_matrices=np.eye(2),
observation_matrices=obs_mat,
observation_covariance=0.5,
transition_covariance=0.000001 * np.eye(2))
state_means, state_covs = kf.filter(Gold2_log)
slope = state_means[:, 0][-1]
intercept = state_means[:, 1][-1]
self.printed = True
return [test_passed1, zscore1, slope1]
def OnData(self,slice):
for chain in slice.FutureChains:
contracts = list(filter(lambda x: x.Expiry > self.Time + timedelta(90), chain.Value))
if len(contracts) == 0:
continue
front1 = sorted(contracts, key = lambda x: x.Expiry)[0]
front2 = sorted(contracts, key = lambda x: x.Expiry)[1]
front3 = sorted(contracts, key = lambda x: x.Expiry)[2]
self.Debug (" Expiry " + str(front3.Expiry) + " - " + str(front3.Symbol))
self.gold1_contract = front1.Symbol
self.gold2_contract = front2.Symbol
self.gold3_contract = front3.Symbol