| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
import math
import numpy as np
import pandas as pd
import statistics
from datetime import datetime, timedelta
class BasicTemplateAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetCash(100000)
self.SetStartDate(2017, 1, 1)
self.SetEndDate(2017, 1, 31)
# Add securities and get the data
self.eq = ["SPY","IWM"]
self.sma10 = dict()
for s in self.eq:
self.AddEquity(s, Resolution.Minute)
self.sma10[s] = self.SMA(s, 10, Resolution.Daily)
# Schedule trades
self.Schedule.On(self.DateRules.EveryDay("SPY"),
self.TimeRules.AfterMarketOpen("SPY", 5),
Action(self.Rebalance))
# Days to warm up the indicators
self.SetWarmup(timedelta(20))
def OnData(self, slice):
pass
def Rebalance(self):
for s in self.eq:
price = self.Securities[s].Price
self.Log("{} {}" .format(s, price))
self.Log("{} {}" .format(s, self.sma10[s]))
self.Log("{} {}" .format(s, float(price) > self.sma10))
#if price >= self.sma10:
#self.SetHoldings(s, 1.0)
#if price < self.sma10:
#self.SetHoldings(s, 0.0)