| Overall Statistics |
|
Total Orders 299 Average Win 0.16% Average Loss -0.14% Compounding Annual Return 23.826% Drawdown 6.300% Expectancy 0.576 Start Equity 1000000 End Equity 1238014.63 Net Profit 23.801% Sharpe Ratio 1.123 Sortino Ratio 1.616 Probabilistic Sharpe Ratio 62.126% Loss Rate 25% Win Rate 75% Profit-Loss Ratio 1.09 Alpha 0.003 Beta 0.741 Annual Standard Deviation 0.125 Annual Variance 0.016 Information Ratio -0.444 Tracking Error 0.102 Treynor Ratio 0.19 Total Fees $1100.72 Estimated Strategy Capacity $89000000.00 Lowest Capacity Asset JNJ R735QTJ8XC9X Portfolio Turnover 2.14% |
from AlgorithmImports import *
class MomentumTrendStrategy(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2019, 1, 1)
self.SetEndDate(2020, 1, 1)
self.SetCash(1000000)
# Add AMD and JNJ (daily resolution)
self.symbols = []
self.symbols.append(self.AddEquity("AMD", Resolution.Daily).Symbol)
self.symbols.append(self.AddEquity("JNJ", Resolution.Daily).Symbol)
# Dictionary to hold indicators for each stock
self.indicators = {}
for symbol in self.symbols:
self.indicators[symbol] = {
"sma50": self.SMA(symbol, 50, Resolution.Daily),
"sma200": self.SMA(symbol, 200, Resolution.Daily),
"rsi": self.RSI(symbol, 14, MovingAverageType.Simple, Resolution.Daily),
"bb": self.BB(symbol, 20, 2, Resolution.Daily)
}
# Warm up indicators
self.SetWarmUp(200)
def OnData(self, data):
if self.IsWarmingUp:
return
for symbol in self.symbols:
# Ensure the indicators are ready
ind = self.indicators[symbol]
if not all([ind["sma50"].IsReady, ind["sma200"].IsReady, ind["rsi"].IsReady, ind["bb"].IsReady]):
continue
# Get the current price from the security object instead of the data slice
price = self.Securities[symbol].Price
sma50 = ind["sma50"].Current.Value
sma200 = ind["sma200"].Current.Value
rsi = ind["rsi"].Current.Value
bb = ind["bb"]
upperBB = bb.UpperBand.Current.Value
middleBB = bb.MiddleBand.Current.Value
lowerBB = bb.LowerBand.Current.Value
# Define base position (trend-following component)
baseWeight = 0.25 if sma50 > sma200 else -0.25
# Adjust exposure based on momentum signals
bullishSignal = price > upperBB and rsi > 50
bearishSignal = price < lowerBB and rsi < 50
targetWeight = baseWeight
if bullishSignal and baseWeight > 0:
targetWeight = 0.5
elif bearishSignal and baseWeight < 0:
targetWeight = -0.5
# Scale back position if momentum weakens
if self.Portfolio[symbol].IsLong and (rsi >= 70 or price < middleBB):
targetWeight = 0.25
if self.Portfolio[symbol].IsShort and (rsi <= 30 or price > middleBB):
targetWeight = -0.25
# Ensure minimum absolute exposure is 25%
if abs(targetWeight) < 0.25:
targetWeight = 0.25 if baseWeight > 0 else -0.25
self.SetHoldings(symbol, targetWeight)
# Debugging output
self.Debug(f"{self.Time} {symbol.Value}: Price={price:.2f}, SMA50={sma50:.2f}, "
f"SMA200={sma200:.2f}, RSI={rsi:.2f}, UpperBB={upperBB:.2f}, "
f"MiddleBB={middleBB:.2f}, LowerBB={lowerBB:.2f}, Target Weight={targetWeight:.2f}")