| Overall Statistics |
|
Total Trades 98 Average Win 0.17% Average Loss -0.23% Compounding Annual Return -10.318% Drawdown 3.700% Expectancy -0.240 Net Profit -2.678% Sharpe Ratio -1.484 Loss Rate 56% Win Rate 44% Profit-Loss Ratio 0.74 Alpha -0.134 Beta 0.37 Annual Standard Deviation 0.058 Annual Variance 0.003 Information Ratio -3.325 Tracking Error 0.065 Treynor Ratio -0.232 Total Fees $98.00 |
from System import *
from System.Collections.Generic import List
from QuantConnect import *
from QuantConnect.Algorithm import QCAlgorithm
from QuantConnect.Data.UniverseSelection import *
class CoarseFineFundamentalComboAlgorithm(QCAlgorithm):
def Initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.SetStartDate(2017,07,01) #Set Start Date
#self.SetEndDate(2015,01,01) #Set End Date
self.SetCash(10000) #Set Strategy Cash
# what resolution should the data *added* to the universe be?
self.UniverseSettings.Resolution = Resolution.Daily
# this add universe method accepts two parameters:
# - coarse selection function: accepts an IEnumerable<CoarseFundamental> and returns an IEnumerable<Symbol>
# - fine selection function: accepts an IEnumerable<FineFundamental> and returns an IEnumerable<Symbol>
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
self.__numberOfSymbols = 5
self.__numberOfSymbolsFine = 2
self._changes = SecurityChanges.None
################### UNIVERSE #####################
# sort the data by daily dollar volume and take the top 'NumberOfSymbols'
def CoarseSelectionFunction(self, coarse):
# sort descending by daily dollar volume
sortedByDollarVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True)
# return the symbol objects of the top entries from our sorted collection
return [ x.Symbol for x in sortedByDollarVolume[:self.__numberOfSymbols] ]
# sort the data by P/E ratio and take the top 'NumberOfSymbolsFine'
def FineSelectionFunction(self, fine):
# sort descending by P/E ratio
sortedByPeRatio = sorted(fine, key=lambda x: x.ValuationRatios.PERatio, reverse=True)
# take the top entries from our sorted collection
return [ x.Symbol for x in sortedByPeRatio[:self.__numberOfSymbolsFine] ]
def OnData(self, data):
# if we have no changes, do nothing
if self._changes == SecurityChanges.None: return
# liquidate removed securities
for security in self._changes.RemovedSecurities:
if security.Invested:
self.Liquidate(security.Symbol)
self.Log('Exit: '.format(security))
# we want 20% allocation in each security in our universe
for security in self._changes.AddedSecurities:
self.SetHoldings(security.Symbol, 0.2)
self.Log('Long: '.format(security))
self._changes = SecurityChanges.None
# this event fires whenever we have changes to our universe
def OnSecuritiesChanged(self, changes):
self._changes = changes