Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
# # QuantConnect Basic Template: # Fundamentals to using a QuantConnect algorithm. # # You can view the QCAlgorithm base class on Github: # https://github.com/QuantConnect/Lean/tree/master/Algorithm # from QuantConnect.Data.Market import TradeBar from datetime import timedelta from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Indicators import * import decimal as d class MyAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2017, 8, 21) # Set Start Date self.SetEndDate(2017, 9, 13) self.SetCash(10000) # Set Strategy Cash self.symbol = self.AddEquity("AAPL", Resolution.Second).Symbol consolidator_daily = TradeBarConsolidator(timedelta(1)) consolidator_daily.DataConsolidated += self.OnDailyData self.SubscriptionManager.AddConsolidator(self.symbol, consolidator_daily) consolidator_minute = TradeBarConsolidator(60) consolidator_minute.DataConsolidated += self.OnMinuteData self.SubscriptionManager.AddConsolidator(self.symbol, consolidator_minute) self.daily_rw = RollingWindow[TradeBar](2) self.minute_rw = RollingWindow[TradeBar](2) self.window = RollingWindow[TradeBar](2) self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen(self.symbol, 5), Action(self.five_minutes_after_open_market)) self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.BeforeMarketClose(self.symbol, 1), Action(self.before_close_market)) # Add daily bar to daily rolling window def OnDailyData(self, sender, bar): self.daily_rw.Add(bar) def OnMinuteData(self, sender, bar): self.minute_rw.Add(bar) def five_minutes_after_open_market(self): if not (self.window.IsReady and self.daily_rw.IsReady and self.minute_rw.IsReady): return last_close = self.window[0].Close #self.Log(last_close) yesterday_daily_close = self.daily_rw[0].Close last_minute_close = self.minute_rw[0].Close last_minute_open = self.minute_rw[0].Open curr_price = self.Securities[self.symbol].Price gap = (last_close - yesterday_daily_close)/yesterday_daily_close*100 last_minute_bar = last_minute_close - last_minute_open stop_price06 = yesterday_daily_close*d.Decimal(0.6) stop_price12 = yesterday_daily_close*d.Decimal(1.2) stop_price18 = yesterday_daily_close*d.Decimal(1.8) stop_price24 = yesterday_daily_close*d.Decimal(2.4) stop_price30 = yesterday_daily_close*d.Decimal(3.0) stop_price36 = yesterday_daily_close*d.Decimal(3.6) stop_price42 = yesterday_daily_close*d.Decimal(4.2) stop_price48 = yesterday_daily_close*d.Decimal(4.8) if not self.Portfolio[self.symbol].Invested: if last_close < stop_price06 and last_minute_bar > 0: self.StopMarketOrder(self.symbol, 60, stop_price06) self.Log('GOING LONG @ 0.6') self.Log('Last bar close: {0}'.format(last_close)) self.Log('Pr day close: {0}'.format(yesterday_daily_close)) self.Log('Last min close: {0}'.format(last_minute_close)) self.Log('Last min open: {0}'.format(last_minute_open)) elif last_close < stop_price12 and last_minute_bar > 0: self.StopMarketOrder(self.symbol, 60, stop_price12) self.Log('GOING LONG @ 1.2') #self.SetHoldings(self.symbol, -1) #self.Log('GOING SHORT') elif last_close < stop_price18 and last_minute_bar > 0: self.StopMarketOrder(self.symbol, 60, stop_price18) self.Log('GOING LONG @ 1.8') def before_close_market(self): """ At the end of the day, if there is a short position, close it. """ if self.Portfolio[self.symbol].IsShort: self.Liquidate(self.symbol) self.Log('LIQUIDATE SHORT End of Day') # Add second bar to window rolling window def OnData(self, data): if data[self.symbol] is None: return self.window.Add(data[self.symbol]) if not (self.window.IsReady and self.minute_rw.IsReady and self.daily_rw.IsReady): return # self.Log("haha") factor = d.Decimal(1.006) currBar = self.window[0].High curr_price = data[self.symbol] last_minute_close = self.minute_rw[0].Close last_minute_open = self.minute_rw[0].Open yesterday_daily_close = self.daily_rw[0].Close last_minute_bar = last_minute_close - last_minute_open stop_price06 = yesterday_daily_close*d.Decimal(0.6) stop_price12 = yesterday_daily_close*d.Decimal(1.2) stop_price18 = yesterday_daily_close*d.Decimal(1.8) stop_price24 = yesterday_daily_close*d.Decimal(2.4) stop_price30 = yesterday_daily_close*d.Decimal(3.0) stop_price36 = yesterday_daily_close*d.Decimal(3.6) stop_price42 = yesterday_daily_close*d.Decimal(4.2) stop_price48 = yesterday_daily_close*d.Decimal(4.8) if not self.Portfolio[self.symbol].Invested: if curr_price == stop_price06 and last_minute_bar > 0: self.SetHoldings(self.symbol, 1) self.Log('GOING LONG @ 0.6') elif curr_price == stop_price12 and last_minute_bar > 0: self.SetHoldings(self.symbol, 1) self.Log('GOING LONG @ 1.2') elif curr_price == stop_price18 and last_minute_bar > 0: self.SetHoldings(self.symbol, 1) self.Log('GOING LONG @ 1.8') # Every second, check the price and if it's higher than the price the stock was bought for times 1.006, close the position. if self.Portfolio[self.symbol].Invested and self.Portfolio[self.symbol].AveragePrice * factor <= curr_price: self.Liquidate(self.symbol) self.Log('LIQUIDATE AT THRESHOLD REACHED.')