| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
from Alphas.EmaCrossAlphaModel import EmaCrossAlphaModel
from Execution.ImmediateExecutionModel import ImmediateExecutionModel
from Risk.NullRiskManagementModel import NullRiskManagementModel
from Selection.QC500UniverseSelectionModel import QC500UniverseSelectionModel
from SlopeBasedEquityMomentumAlphaModel import SlopeBasedEquityMomentumAlphaModel
class BasicTemplateFrameworkAlgorithm(QCAlgorithmFramework):
def Initialize(self):
# Set requested data resolution
self.UniverseSettings.Resolution = Resolution.Daily
self.SetStartDate(2019, 3, 4) #Set Start Date
self.SetEndDate(2019, 3, 7) #Set End Date
self.SetCash(100000) #Set Strategy Cash
# selection will run on mon/tues/thurs at 00:00/06:00/12:00/18:00
self.SetUniverseSelection(QC500UniverseSelectionModel())
self.SetAlpha(SlopeBasedEquityMomentumAlphaModel())
self.SetPortfolioConstruction(NullPortfolioConstructionModel())
self.SetExecution(ImmediateExecutionModel())
self.SetRiskManagement(NullRiskManagementModel())
def OnOrderEvent(self, orderEvent):
if orderEvent.Status == OrderStatus.Filled:
# self.Debug("Purchased Stock: {0}".format(orderEvent.Symbol))
pass# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from clr import AddReference
AddReference("QuantConnect.Common")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Algorithm.Framework")
AddReference("QuantConnect.Indicators")
from QuantConnect import *
from QuantConnect.Indicators import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework import *
from QuantConnect.Algorithm.Framework.Alphas import *
class SlopeBasedEquityMomentumAlphaModel(AlphaModel):
'''Defines a custom alpha model that uses MACD crossovers. The MACD signal line
is used to generate up/down insights if it's stronger than the bounce threshold.
If the MACD signal is within the bounce threshold then a flat price insight is returned.'''
def __init__(self,
shortTermMomentumWindow = 60,
longTermMomentumWindow = 90,
minimumMomentum = 60,
indexAverageWindow = 100,
resolution = Resolution.Daily):
''' Initializes a new instance of the MacdAlphaModel class
Args:
fastPeriod: The MACD fast period
slowPeriod: The MACD slow period</param>
signalPeriod: The smoothing period for the MACD signal
movingAverageType: The type of moving average to use in the MACD'''
self.shortTermMomentumWindow = shortTermMomentumWindow,
self.longTermMomentumWindow = longTermMomentumWindow,
self.minimumMomentum = minimumMomentum,
self.indexAverageWindow = indexAverageWindow,
self.resolution = resolution
self.symbolData = {}
resolutionString = Extensions.GetEnumString(resolution, Resolution)
def slope(ts):
'''
Args:
Price time series.
Returns:
Annualized exponential regression slope, multipl
'''
x = np.arange(len(ts))
log_ts = np.log(ts)
slope, intercept, r_value, p_value, std_err = stats.linregress(x, log_ts)
annualized_slope = (np.power(np.exp(slope), 250) - 1) * 100
return annualized_slope * (r_value ** 2)
def Update(self, algorithm, data):
''' Determines an insight for each security based on two annualized slopes
Args:
algorithm: The algorithm instance
data: The new data available
Returns:
The new insights generated'''
insights = []
#shortTermBars = GetDailyClosesForAllSymbolsInUniverse(self.shortTermMomentumWindow,self.resolution)
#longTermBars = GetDailyClosesForAllSymbolsInUniverse(self.longTermMomentumWindow,self.resolution)
#...
return insights