| Overall Statistics |
|
Total Trades 7313 Average Win 0.10% Average Loss -0.08% Compounding Annual Return 13.876% Drawdown 12.600% Expectancy 0.178 Net Profit 66.496% Sharpe Ratio 0.923 Probabilistic Sharpe Ratio 38.868% Loss Rate 48% Win Rate 52% Profit-Loss Ratio 1.25 Alpha 0.054 Beta 0.361 Annual Standard Deviation 0.109 Annual Variance 0.012 Information Ratio -0.196 Tracking Error 0.142 Treynor Ratio 0.278 Total Fees $8274.08 Estimated Strategy Capacity $28000000.00 Lowest Capacity Asset DOV R735QTJ8XC9X |
"""
Crypto trading bot using maching learning
Multiple crypto portfolio
@version: 0.4
"""
import clr
clr.AddReference("System")
clr.AddReference("QuantConnect.Algorithm")
clr.AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework.Execution import *
import pandas as pd
pd.set_option('mode.use_inf_as_na', True)
from sklearn.pipeline import Pipeline
from sklearn.decomposition import PCA
from sklearn.metrics import get_scorer
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import classification_report
from sklearn.model_selection import RandomizedSearchCV
from timeseriessplitgroups import TimeSeriesSplitGroups
STEPS = [("pca", PCA()),
("mlp", MLPClassifier(n_iter_no_change=1, max_iter=100,
solver="adam", early_stopping=True,
warm_start=True, validation_fraction=0.2))]
PARAMS = {"pca__n_components": [None, 0.9],
"mlp__activation": ["logistic", "relu"],
"mlp__alpha": [0.1, 0.01, 0.001, 0.0001, 0],
"mlp__hidden_layer_sizes": [[96, ], [48, 48], [32, 32, 32]]}
class MLCryptoAlgo(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2018, 1, 1)
self.SetCash(100000)
self.SetBrokerageModel(BrokerageName.Bitfinex, AccountType.Cash)
self.Settings.FreePortfolioValuePercentage = 0.05
self.lookbacks = [1, 7, 15, 30, 90]
self.datapoints = 365 * 5
self.model = None
self.threshold = 0.01
self.resolution = Resolution.Daily
self.SetBenchmark(SecurityType.Crypto, "BTCUSD")
tickers = ["BTCUSD", "ETHUSD", "LTCUSD",
"EOSUSD", "XMRUSD", "XRPUSD"] # NO BCH, ADA, DOT, ATOM
[self.AddCrypto(t, self.resolution, Market.Bitfinex) for t in tickers]
self.pos_size = 1.0 / len(tickers)
self.Train(self.DateRules.WeekStart(),
self.TimeRules.At(0, 0),
self.train_model)
self.Schedule.On(self.DateRules.EveryDay(),
self.TimeRules.At(0, 0),
self.trade)
def train_model(self):
""" Train model with new data, model is created if missing """
if self.model is None:
cv = TimeSeriesSplitGroups(n_splits=10)
self.model = RandomizedSearchCV(Pipeline(steps=STEPS), PARAMS,
scoring="balanced_accuracy",
cv=cv, n_iter=10, n_jobs=1)
x, y = self.get_data(self.datapoints, include_y=True)
if len(x) > 0 and len(y) > 0:
groups = x.index.get_level_values("time")
self.model.fit(x, y, groups=groups)
self.Debug(classification_report(y, self.model.predict(x)))
self.Plot("Model", "Bal. Accuracy", float(self.model.best_score_))
def trade(self):
x = self.get_data(max(self.lookbacks) + 1, include_y=False)
if len(x) > 0 and self.model is not None:
symbols = x.index.get_level_values("symbol")
pred = pd.Series(self.model.predict(x), index=symbols).sort_values()
for symbol in pred.index:
if pred[symbol]==1:
self.SetHoldings(symbol, self.pos_size)
elif pred[symbol]==-1:
self.SetHoldings(symbol, 0)
def get_data(self, datapoints=1, include_y=True):
tickers = list(self.ActiveSecurities.Keys)
data = self.History(tickers, datapoints, self.resolution)
data["volatility"] = data["high"] - data["low"]
data["spread"] = data["askclose"] - data["bidclose"]
data = data[["close", "volatility", "volume", "spread"]]
groups = data.groupby("symbol")
features = [groups.pct_change(p) for p in self.lookbacks] # Momentum
features += [data / groups.apply(lambda x: x.rolling(p).mean())
for p in self.lookbacks] # Feats normalized by their average
features = pd.concat(features, join="inner", axis="columns").dropna()
if include_y:
target = groups["close"].pct_change(1).shift(-1)
target = target.reindex_like(features).dropna()
target = target.apply(lambda x: +1 if x>self.threshold else
(-1 if x<-self.threshold else 0))
return features.loc[target.index], target
else:
return features
"""
Crypto trading bot using machine learning
Complete version with limit and stop order
@version: 0.13
"""
import clr
clr.AddReference("System")
clr.AddReference("QuantConnect.Algorithm")
clr.AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework.Execution import *
import pandas as pd
pd.set_option('mode.use_inf_as_na', True)
from sklearn.decomposition import PCA
from sklearn.pipeline import Pipeline
from sklearn.metrics import precision_score
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
from timeseriescv import PurgedTimeSeriesSplitGroups
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import train_test_split as ttsplit
import features as ft
STEPS = [("scaler", StandardScaler()),
("pca", PCA()),
("model", LogisticRegression())]
PARAMS = {"pca__n_components": ["mle", None],
"model": [MLPClassifier(n_iter_no_change=1,
early_stopping=True,
hidden_layer_sizes=(64, 64)),
GradientBoostingClassifier(n_iter_no_change=1,
max_depth=5),
LogisticRegression()]}
class MLCryptoAlgo(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2018, 1, 1)
self.SetCash(100000)
self.SetBrokerageModel(BrokerageName.GDAX, AccountType.Cash)
self.Settings.FreePortfolioValuePercentage = 0.05
self.resolution = Resolution.Hour
self.bar_size = 24
self.tickers = ["BTCUSD", "ETHUSD", "LTCUSD", "EOSUSD",
"XRPUSD", "ETCUSD", "BCHUSD", "ATOMUSD"] # NO ADA, DOT, SOL, XMR
self.SetBenchmark(self.CustomBenchmark)
[self.AddCrypto(t, self.resolution, Market.GDAX) for t in self.tickers]
self.periods = [1, 7, 30]
self.lookback = max(self.periods)
self.datapoints = 365 * 1
self.possize = 0.0
self.commissions = 0.002
self.model = None
self.Train(self.DateRules.WeekStart(), #self.DateRules.EveryDay(),
self.TimeRules.At(0, 15),
self.train_model)
self.Schedule.On(self.DateRules.EveryDay(),
self.TimeRules.At(0, 30), #self.TimeRules.Every(TimeSpan.FromHours(1)),
self.trade)
def CustomBenchmark(self, time):
bmk = [self.Securities[ticker].Price for ticker in self.tickers]
return sum(bmk)/len(self.tickers)
def train_model(self):
""" Train model with new data, model is created if missing """
x, y = self.get_data(self.datapoints, augmentation=2, include_y=True)
if len(x) > 0 and len(y) > 0:
dates = x.index.get_level_values("time").sort_values()
train_dates, test_dates = ttsplit(dates.unique(), shuffle=False)
x_train = x[dates.isin(train_dates)]
y_train = y[dates.isin(train_dates)]
if self.model is None:
cv = PurgedTimeSeriesSplitGroups(n_splits=5,
purge_groups=self.lookback)
self.model = GridSearchCV(Pipeline(steps=STEPS), PARAMS,
scoring="precision", cv=cv)
groups = x_train.index.get_level_values("time")
self.model.fit(x_train, (y_train > 0), groups=groups)
self.Log(pd.DataFrame(self.model.cv_results_).to_string())
x_test = x[dates.isin(test_dates)]
y_test = y[dates.isin(test_dates)]
self.calc_kelly(x_test, (y_test > 0), y_test)
def calc_kelly(self, x, y, returns):
""" Calculate info needed for Kelly position sizing """
winrate = precision_score(y, self.model.predict(x))
avgwin = max(returns[returns > 0].mean() - 2 * self.commissions, 0)
avgloss = max(-returns[returns < 0].mean() + 2 * self.commissions, 0)
self.possize = winrate / avgloss - (1 - winrate) / avgwin
self.possize = min(max(self.possize, 0), 1)
self.Debug(f"PT:{len(x)} WR:{winrate:.3f} PS:{self.possize:.3f} "
f"AW:{avgwin:.4f} AL:{avgloss:.4f}")
self.Plot("Model", "Win Rate", winrate)
self.Plot("Model", "Win Loss Ratio", avgwin / avgloss)
self.Plot("Model", "Kelly Position", self.possize)
def trade(self):
x = self.get_data(self.lookback*2+1, include_y=False)
self.Transactions.CancelOpenOrders()
if len(x) > 0 and self.model is not None:
x = x.groupby("symbol").last() # TODO: Check why there are more datapoints
tickers = x.index.get_level_values("symbol")
pred = pd.Series(self.model.predict(x), index=tickers)
self.Log(f"Predictions\n{pred.to_string()}")
self.Debug(f"Prediction symbols {len(tickers)}")
for ticker in pred.index:
target = self.possize / len(tickers) if pred[ticker]==1 else 0
qty = self.CalculateOrderQuantity(ticker, target)
self.LimitOrder(ticker, qty, self.Securities[ticker].Price)
def get_data(self, points=1, augmentation=1, include_y=True):
tickers = list(self.ActiveSecurities.Keys)
history = self.History(tickers, points * self.bar_size, self.resolution)
# define data
history["volatility"] = history["high"] - history["low"]
history["spread"] = history["askclose"] - history["bidclose"]
history["vwap"] = ft.vwap(history, self.lookback)
history = history[["close", "volatility", "volume", "spread", "vwap"]]
features_aug, target_aug = pd.DataFrame(), pd.Series()
step_size = int(self.bar_size / augmentation)
for step in range(0, self.bar_size, step_size):
# consolidate data and shift it if there is augmentation
groupers = [pd.Grouper(level="symbol"),
pd.Grouper(level="time", base=step,
freq=f"{self.bar_size}H")]
consolidated = history.groupby(groupers)
data = pd.concat([consolidated["close"].last(),
consolidated["volatility"].mean(),
consolidated["volume"].sum(),
consolidated["vwap"].mean(),
consolidated["spread"].mean()],
join="inner", axis="columns").dropna()
# calculate features
indicators = [ft.momentum(data, self.periods),
ft.strength(data, self.periods),
ft.macd(data, zip(self.periods[:-1], self.periods[1:])),
ft.minmax(data, self.periods[1:])]
new_indicators = [ft.diff(i, self.periods[1:]) for i in indicators]
new_indicators += [ft.std(i, p) for i in indicators for p in self.periods[1:]]
features = ft.join_indicators(indicators+new_indicators+[ft.time(data)])
features_aug = features_aug.append(features)
target = data["close"].groupby("symbol").pct_change(1).shift(-1)
target_aug = target_aug.append(target)
if include_y:
target_aug = target_aug.reindex_like(features_aug).dropna()
return features_aug.loc[target_aug.index], target_aug
else:
return features_aug"""
Crypto trading bot using maching learning
Triple barrier target
@version: 0.3
"""
import clr
clr.AddReference("System")
clr.AddReference("QuantConnect.Algorithm")
clr.AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework.Execution import *
import pandas as pd
pd.set_option('mode.use_inf_as_na', True)
from sklearn.pipeline import Pipeline
from sklearn.decomposition import PCA
from sklearn.metrics import get_scorer
from sklearn.metrics import confusion_matrix
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import classification_report
from sklearn.model_selection import RandomizedSearchCV
from timeseriessplitgroups import TimeSeriesSplitGroups
STEPS = [("pca", PCA()),
("mlp", MLPClassifier(n_iter_no_change=1, max_iter=100,
solver="adam", early_stopping=True,
warm_start=True, validation_fraction=0.2))]
PARAMS = {"pca__n_components": [None, 0.9],
"mlp__activation": ["logistic", "relu"],
"mlp__alpha": [0.1, 0.01, 0.001, 0.0001, 0],
"mlp__hidden_layer_sizes": [[96, ], [48, 48], [32, 32, 32]]}
# TODO: Add Trailing Stop https://www.quantconnect.com/docs/algorithm-reference/trading-and-orders#Trading-and-Orders-Updating-Orders
class MLCryptoAlgo(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2018, 1, 1)
self.SetCash(100000)
self.SetBrokerageModel(BrokerageName.GDAX, AccountType.Cash)
self.Settings.FreePortfolioValuePercentage = 0.05
self.lookbacks = [1, 7, 15, 30, 91, 182, 365]
self.datapoints = 365 * 5
self.model = None
self.limit_margin = 0.0
self.stop_margin = 0.01
self.take_profit = 0.01
self.resolution = Resolution.Daily
self.SetBenchmark(SecurityType.Crypto, "BTCUSD")
tickers = ["BTCUSD"]
[self.AddCrypto(t, self.resolution, Market.GDAX) for t in tickers]
self.pos_size = 1.0 / (len(tickers) * (1+self.limit_margin)) # Accounting for available cash
self.Train(self.DateRules.MonthStart(),
self.TimeRules.At(0, 0),
self.train_model)
self.Schedule.On(self.DateRules.EveryDay(),
#self.TimeRules.Every(timedelta(minutes=60)),
self.TimeRules.At(0, 0),
self.trade)
def train_model(self):
""" Train model with new data, model is created if missing """
if self.model is None:
cv = TimeSeriesSplitGroups(n_splits=10)
self.model = RandomizedSearchCV(Pipeline(steps=STEPS), PARAMS,
scoring="balanced_accuracy",
cv=cv, n_iter=10, n_jobs=1)
x, y = self.get_data(self.datapoints, include_y=True)
if len(x) > 0 and len(y) > 0:
groups = x.index.get_level_values("time")
self.model.fit(x, y, groups=groups)
self.Debug(confusion_matrix(y, self.model.predict(x)))
self.Debug(classification_report(y, self.model.predict(x)))
self.Plot("Model", "Bal. Accuracy", float(self.model.best_score_))
def trade(self):
x = self.get_data(max(self.lookbacks) + 1, include_y=False)
if len(x) > 0 and self.model is not None:
y = pd.Series(self.model.predict(x), index=x.index)
for symbol in self.ActiveSecurities.Keys:
signal = y[str(symbol.ID)][0]
if signal == 1:
qty_order = self.CalculateOrderQuantity(symbol, self.pos_size)
if qty_order > 0:
price = self.Securities[symbol].Price
limit = round(price * (1+self.limit_margin), 2)
stop = round(price * (1-self.stop_margin), 2)
self.StopLimitOrder(symbol, qty_order, stop, limit)
elif signal == -1:
self.SetHoldings(symbol, 0)
def get_data(self, datapoints=1, include_y=True):
tickers = list(self.ActiveSecurities.Keys)
data = self.History(tickers, datapoints, self.resolution)
data["volatility"] = data["high"] - data["low"]
data["spread"] = data["askclose"] - data["bidclose"]
data = data[["close", "volatility", "volume", "spread"]]
groups = data.groupby("symbol")
features = [groups.pct_change(p) for p in self.lookbacks] # Momentum
features += [data / groups.apply(lambda x: x.rolling(p).mean())
for p in self.lookbacks] # Feats normalized by their average
features = pd.concat(features, join="inner", axis="columns").dropna()
if include_y:
target = groups["close"].pct_change(1).shift(-1)
target = target.reindex_like(features).dropna()
target = target.apply(lambda x: +1 if x>self.take_profit else
(-1 if x<-self.stop_margin else 0))
return features.loc[target.index], target
else:
return features
"""
Trading bot using machine learning
Testing different bars types
@version: 0.17
"""
import datetime
import clr
clr.AddReference("System")
clr.AddReference("QuantConnect.Algorithm")
clr.AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework.Execution import *
import random
import pandas as pd
pd.set_option('mode.use_inf_as_na', True)
from sklearn.pipeline import Pipeline
from sklearn.metrics import precision_score
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPClassifier
import features as ft
from qcutils import SP500
STEPS = [("scaler", StandardScaler()),
("model", MLPClassifier(warm_start=True,
max_iter=1,
hidden_layer_sizes=(64, 64)))]
class MLCryptoAlgo(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2018, 1, 1)
self.SetCash(100000)
self.Settings.FreePortfolioValuePercentage = 0.05
self.resolution = Resolution.Daily
self.bar_size = 24
random.seed(42)
self.tickers = random.sample(SP500, 10)
[self.AddEquity(t, self.resolution) for t in self.tickers]
#self.AddEquity("SPY", self.resolution)
self.periods = [1, 5, 21]
self.train_days = timedelta(252 * 2)
self.test_days = timedelta(252 * 1)
self.test_start = None
self.pos_size = 0.0
self.commissions = 0.0
self.model = Pipeline(steps=STEPS)
self.Train(self.DateRules.MonthStart(), #self.DateRules.EveryDay(),
self.TimeRules.At(0, 15),
self.train_model)
self.Schedule.On(self.DateRules.EveryDay(),
self.TimeRules.At(10, 0), #self.TimeRules.Every(TimeSpan.FromHours(1)),
self.trade)
def train_model(self):
""" Train model with new data, model is created if missing """
self.test_start = self.Time-self.test_days
train_start = self.test_start-self.train_days
x_train, y_train = self.get_data(train_start, self.test_start)
self.model.fit(x_train, (y_train > 0))
x_test, y_test = self.get_data(self.test_start, self.Time)
self.Log(f"Model score {self.model.score(x_test, (y_test > 0))}")
self.calc_kelly(x_test, (y_test > 0), y_test)
def calc_kelly(self, x, y, returns):
""" Calculate info needed for Kelly position sizing """
winrate = precision_score(y, self.model.predict(x))
avgwin = max(returns[returns > 0].mean() - 2 * self.commissions, 0)
avgloss = max(-returns[returns < 0].mean() + 2 * self.commissions, 0)
self.pos_size = winrate / avgloss - (1 - winrate) / avgwin
self.pos_size = min(max(self.pos_size, 0), 1)
self.Debug(f"PT:{len(x)} WR:{winrate:.3f} PS:{self.pos_size:.3f} "
f"AW:{avgwin:.4f} AL:{avgloss:.4f}")
self.Plot("Model", "Win Rate", winrate)
self.Plot("Model", "Win Loss Ratio", avgwin / avgloss)
self.Plot("Model", "Kelly Position", self.pos_size)
def trade(self):
x_pred = self.get_data(self.test_start, self.Time, include_y=False)
self.Transactions.CancelOpenOrders()
if len(x_pred) > 0 and self.model is not None:
x_pred = x_pred.sort_index().groupby("symbol").last()
tickers = x_pred.index.get_level_values("symbol")
pred = pd.Series(self.model.predict(x_pred), index=tickers)
self.Log(f"Predictions\n{pred.to_string()}")
self.Debug(f"{self.Time} - Predictions symbols {len(pred)} - {pred.mean():.2f}")
for ticker in pred.index:
target = self.pos_size / sum(pred) if pred[ticker] else 0
self.SetHoldings(ticker, target)
def get_data(self, start, end, include_y=True):
tickers = list(self.ActiveSecurities.Keys)
history = self.History(tickers, start, end, self.resolution)
#data = ft.volume_bars(history, bar_size=self.bar_size)[["close"]]
data = history[["close"]]
# calculate features
indicators = [ft.momentum(data, self.periods),
ft.strength(data, self.periods)]
features = ft.join_indicators(indicators)
target = data["close"].groupby("symbol").pct_change(1).shift(-1)
if include_y:
target = target.reindex_like(features).dropna()
return features.loc[target.index], target
else:
return features
"""
Crypto trading bot using machine learning
Index with weights based on Machine Learning probabilities
@version: 0.14
"""
import clr
clr.AddReference("System")
clr.AddReference("QuantConnect.Algorithm")
clr.AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework.Execution import *
import pandas as pd
pd.set_option('mode.use_inf_as_na', True)
from sklearn.decomposition import PCA
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
from timeseriescv import PurgedTimeSeriesSplitGroups
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import train_test_split as ttsplit
import features as ft
STEPS = [("scaler", StandardScaler()),
("pca", PCA(n_components="mle")),
("model", LogisticRegression())]
PARAMS = {"model": [MLPClassifier(n_iter_no_change=1,
early_stopping=True,
hidden_layer_sizes=(64, 64)),
GradientBoostingClassifier(n_iter_no_change=1,
max_depth=5),
LogisticRegression()]}
class MLCryptoAlgo(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2018, 1, 1)
self.SetCash(100000)
self.SetBrokerageModel(BrokerageName.GDAX, AccountType.Cash)
self.Settings.FreePortfolioValuePercentage = 0.05
self.resolution = Resolution.Hour
self.bar_size = 24
self.tickers = ["BTCUSD", "ETHUSD", "LTCUSD", "EOSUSD",
"XRPUSD", "ETCUSD", "BCHUSD", "ATOMUSD"] # NO ADA, DOT, SOL, XMR
self.SetBenchmark(self.CustomBenchmark)
[self.AddCrypto(t, self.resolution, Market.GDAX) for t in self.tickers]
self.periods = [1, 7, 30]
self.lookback = max(self.periods)
self.datapoints = 365 * 1
self.possize = 0.0
self.commissions = 0.002
self.model = None
self.Train(self.DateRules.MonthStart(), #self.DateRules.EveryDay(),
self.TimeRules.At(0, 15),
self.train_model)
self.Schedule.On(self.DateRules.EveryDay(),
self.TimeRules.At(0, 30), #self.TimeRules.Every(TimeSpan.FromHours(1)),
self.trade)
def CustomBenchmark(self, time):
bmk = [self.Securities[ticker].Price for ticker in self.tickers]
return sum(bmk)/len(self.tickers)
def train_model(self):
""" Train model with new data, model is created if missing """
x, y = self.get_data(self.datapoints, augmentation=2, include_y=True)
if len(x) > 0 and len(y) > 0:
if self.model is None:
cv = PurgedTimeSeriesSplitGroups(n_splits=5,
purge_groups=self.lookback)
self.model = GridSearchCV(Pipeline(steps=STEPS), PARAMS,
scoring="precision", cv=cv)
groups = x.index.get_level_values("time")
self.model.fit(x, (y > 0), groups=groups)
self.Log(pd.DataFrame(self.model.cv_results_).to_string())
def trade(self):
x = self.get_data(self.lookback*2+1, include_y=False)
self.Transactions.CancelOpenOrders()
if len(x) > 0 and self.model is not None:
x = x.groupby("symbol").last()
tickers = x.index.get_level_values("symbol")
pred = pd.Series(self.model.predict_proba(x)[:,1], index=tickers)
sizes = pred/pred.sum()
self.Debug(f"Sizes {sizes}")
self.Log(f"Predictions\n{pred.to_string()}")
self.Debug(f"Prediction symbols {len(tickers)}")
for ticker in pred.index:
qty = self.CalculateOrderQuantity(ticker, sizes[ticker])
self.LimitOrder(ticker, qty, self.Securities[ticker].Price)
def get_data(self, points=1, augmentation=1, include_y=True):
tickers = list(self.ActiveSecurities.Keys)
history = self.History(tickers, points * self.bar_size, self.resolution)
# define data
history["volatility"] = history["high"] - history["low"]
history["spread"] = history["askclose"] - history["bidclose"]
history["vwap"] = ft.vwap(history, self.lookback)
history = history[["close", "volatility", "volume", "spread", "vwap"]]
features_aug, target_aug = pd.DataFrame(), pd.Series()
step_size = int(self.bar_size / augmentation)
for step in range(0, self.bar_size, step_size):
# consolidate data and shift it if there is augmentation
groupers = [pd.Grouper(level="symbol"),
pd.Grouper(level="time", base=step,
freq=f"{self.bar_size}H")]
consolidated = history.groupby(groupers)
data = pd.concat([consolidated["close"].last(),
consolidated["volatility"].mean(),
consolidated["volume"].sum(),
consolidated["vwap"].mean(),
consolidated["spread"].mean()],
join="inner", axis="columns").dropna()
# calculate features
indicators = [ft.momentum(data, self.periods),
ft.strength(data, self.periods),
ft.macd(data, zip(self.periods[:-1], self.periods[1:])),
ft.minmax(data, self.periods[1:])]
#new_indicators = [ft.diff(i, self.periods[1:]) for i in indicators]
#new_indicators += [ft.std(i, p) for i in indicators for p in self.periods[1:]]
#features = ft.join_indicators(indicators+new_indicators+[ft.time(data)])
features = ft.join_indicators(indicators+[ft.time(data)])
features_aug = features_aug.append(features)
target = data["close"].groupby("symbol").pct_change(1).shift(-1)
target_aug = target_aug.append(target)
if include_y:
target_aug = target_aug.reindex_like(features_aug).dropna()
return features_aug.loc[target_aug.index], target_aug
else:
return features_aug"""
Crypto trading bot using maching learning
Incorporating results from feature experiments
@version: 0.8
"""
import clr
clr.AddReference("System")
clr.AddReference("QuantConnect.Algorithm")
clr.AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework.Execution import *
import pickle
import pandas as pd
pd.set_option('mode.use_inf_as_na', True)
from sklearn.pipeline import Pipeline
from sklearn.decomposition import PCA
from sklearn.preprocessing import MinMaxScaler
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import average_precision_score
from timeseriescv import PurgedTimeSeriesSplitGroups
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import train_test_split as ttsplit
STEPS = [("scaler", MinMaxScaler()),
("pca", PCA()),
("model", LogisticRegression())]
PARAMS = {"pca__n_components": [1, 0.99],
"model": [MLPClassifier(n_iter_no_change=1, early_stopping=True),
GradientBoostingClassifier(n_iter_no_change=1),
LogisticRegression()]}
class MLCryptoAlgo(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2018, 1, 1)
self.SetCash(100000)
self.SetBrokerageModel(BrokerageName.Bitfinex, AccountType.Cash)
self.resolution = Resolution.Daily
self.SetBenchmark(SecurityType.Crypto, "BTCUSD")
self.tickers = ["BTCUSD", "ETHUSD", "LTCUSD", "EOSUSD", "XMRUSD", "XRPUSD"][:1] # NO BCH, ADA, DOT, ATOM
[self.AddCrypto(t, self.resolution, Market.Bitfinex)
for t in self.tickers]
self.lookbacks = [1, 7, 15, 31, 63, 126, 252]
self.datapoints = 365 * 5
self.pos_size = 0.0
self.commissions = 0.002
self.model = None
self.model_key = "crypto_multi_daily"
self.ObjectStore.Delete(self.model_key)
if self.ObjectStore.ContainsKey(self.model_key):
model_buffer = self.ObjectStore.ReadBytes(self.model_key)
self.Log(f"Loading model {self.model_key}")
self.model = pickle.loads(bytes(model_buffer))
self.Train(self.DateRules.WeekStart(), #self.DateRules.EveryDay(),
self.TimeRules.At(0, 30),
self.train_model)
self.Schedule.On(self.DateRules.EveryDay(),
self.TimeRules.At(0, 0), #self.TimeRules.Every(TimeSpan.FromHours(1)),
self.trade)
def train_model(self):
""" Train model with new data, model is created if missing """
if self.model is None:
cv = PurgedTimeSeriesSplitGroups(n_splits=10,
purge_groups=max(self.lookbacks))
self.model = GridSearchCV(Pipeline(steps=STEPS), PARAMS,
scoring="average_precision", cv=cv)
x, y = self.get_data(self.datapoints, include_y=True)
if len(x) > 0 and len(y) > 0:
dates = x.index.get_level_values("time").sort_values()
train_dates, test_dates = ttsplit(dates.unique(), shuffle=False)
x_train = x[dates.isin(train_dates)]
y_train = y[dates.isin(train_dates)]
groups = x_train.index.get_level_values("time")
self.model.fit(x_train, (y_train > 0), groups=groups)
self.Log(pd.DataFrame(self.model.cv_results_))
self.ObjectStore.SaveBytes(self.model_key, pickle.dumps(self.model))
x_test = x[dates.isin(test_dates)]
y_test = y[dates.isin(test_dates)]
self.calc_kelly(x_test, (y_test > 0), y_test)
def calc_kelly(self, x, y, returns):
""" Calculate info needed for Kelly position sizing """
win_rate = average_precision_score(y, self.model.predict(x))
avg_win = max(returns[returns>0].mean()-2*self.commissions, 0)
avg_loss = -returns[returns<0].mean()+2*self.commissions
self.pos_size = min(max(win_rate/avg_loss-(1-win_rate)/avg_win, 0), 1)
self.Plot("Model", "Win Rate", win_rate)
self.Plot("Model", "Win Loss Ratio", avg_win/avg_loss)
self.Plot("Model", "Kelly Position", self.pos_size)
self.Debug(f"WR:{win_rate:.3f} PS:{self.pos_size:.3f} "
f"AW:{avg_win:.4f} AL:{avg_loss:.4f}")
def trade(self):
x = self.get_data(max(self.lookbacks) + 1, include_y=False)
if len(x) > 0 and self.model is not None:
symbols = x.index.get_level_values("symbol")
pred = pd.Series(self.model.predict(x), index=symbols)
self.Log(f"Predictions\n{pred.to_string()}")
for symbol in pred.index:
if pred[symbol] == 1:
self.SetHoldings(symbol, self.pos_size/len(self.tickers))
else:
self.SetHoldings(symbol, 0)
def get_data(self, datapoints=1, include_y=True):
tickers = list(self.ActiveSecurities.Keys)
data = self.History(tickers, datapoints, self.resolution)
data["volatility"] = data["high"] - data["low"]
data["spread"] = data["askclose"] - data["bidclose"]
data = data[["close", "volatility", "volume", "spread"]]
groups = data.groupby("symbol")
features = [groups.pct_change(p) for p in self.lookbacks] # Momentum
features += [data / groups.transform(lambda x: x.rolling(p).mean())
for p in self.lookbacks[1:]] # Strength
features += [(data - groups.transform(lambda x: x.rolling(p).min()))/
(groups.transform(lambda x: x.rolling(p).max())-
groups.transform(lambda x: x.rolling(p).min()))
for p in self.lookbacks[1:]] # Min/max strength
features = pd.concat(features, join="inner", axis="columns").dropna()
self.Debug(f"Get Data {features.shape}")
if include_y:
target = groups["close"].pct_change(1).shift(-1)
target = target.reindex_like(features).dropna()
return features.loc[target.index], target
else:
return features"""
Crypto trading bot using machine learning
Using online learning with Neural Network
@version: 0.16
"""
import datetime
import clr
clr.AddReference("System")
clr.AddReference("QuantConnect.Algorithm")
clr.AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework.Execution import *
import pandas as pd
pd.set_option('mode.use_inf_as_na', True)
from sklearn.pipeline import Pipeline
from sklearn.metrics import precision_score
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPClassifier
import features as ft
STEPS = [("scaler", StandardScaler()),
("model", MLPClassifier(warm_start=True,
max_iter=10,
hidden_layer_sizes=(64, 64)))]
class MLCryptoAlgo(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2018, 1, 1)
self.SetCash(100000)
self.SetBrokerageModel(BrokerageName.GDAX, AccountType.Cash)
self.Settings.FreePortfolioValuePercentage = 0.05
self.resolution = Resolution.Daily
self.tickers = ["BTCUSD", "ETHUSD", "LTCUSD", "XRPUSD", "BCHUSD"]
self.SetBenchmark(self.CustomBenchmark)
[self.AddCrypto(t, self.resolution, Market.GDAX) for t in self.tickers]
self.periods = [1, 7, 30]
self.train_days = timedelta(365 * 2)
self.test_days = timedelta(365 * 1)
self.test_start = None
self.pos_size = 0.01
self.commissions = 0.002
self.limit_order = None
self.model = Pipeline(steps=STEPS)
self.Train(self.DateRules.MonthStart(), #self.DateRules.EveryDay(),
self.TimeRules.At(0, 15),
self.train_model)
self.Schedule.On(self.DateRules.EveryDay(),
self.TimeRules.At(0, 30), #self.TimeRules.Every(TimeSpan.FromHours(1)),
self.trade)
def CustomBenchmark(self, time):
bmk = [self.Securities[ticker].Price for ticker in self.tickers]
return sum(bmk)/len(self.tickers)
def train_model(self):
""" Train model with new data, model is created if missing """
self.test_start = self.Time-self.test_days
train_start = self.test_start-self.train_days
x_train, y_train = self.get_data(train_start, self.test_start)
self.model.fit(x_train, (y_train > 0))
x_test, y_test = self.get_data(self.test_start, self.Time)
self.Log(f"Model score {self.model.score(x_test, (y_test > 0))}")
self.calc_kelly(x_test, (y_test > 0), y_test)
def calc_kelly(self, x, y, returns):
""" Calculate info needed for Kelly position sizing """
winrate = precision_score(y, self.model.predict(x))
avgwin = max(returns[returns > 0].mean() - 2 * self.commissions, 0)
avgloss = max(-returns[returns < 0].mean() + 2 * self.commissions, 0)
self.pos_size = winrate / avgloss - (1 - winrate) / avgwin
self.pos_size = min(max(self.pos_size, 0), 1)
self.Debug(f"PT:{len(x)} WR:{winrate:.3f} PS:{self.pos_size:.3f} "
f"AW:{avgwin:.4f} AL:{avgloss:.4f}")
self.Plot("Model", "Win Rate", winrate)
self.Plot("Model", "Win Loss Ratio", avgwin / avgloss)
self.Plot("Model", "Kelly Position", self.pos_size)
def trade(self):
x_pred = self.get_data(self.test_start, self.Time, include_y=False)
self.Transactions.CancelOpenOrders()
if len(x_pred) > 0 and self.model is not None:
x_pred = x_pred.sort_index().groupby("symbol").last()
tickers = x_pred.index.get_level_values("symbol")
pred = pd.Series(self.model.predict(x_pred), index=tickers)
self.Log(f"Predictions\n{pred.to_string()}")
self.Debug(f"{self.Time} - Predictions symbols {len(pred)}")
for ticker in pred.index:
target = self.pos_size / sum(pred) if pred[ticker] else 0
qty = self.CalculateOrderQuantity(ticker, target)
last_price = self.Securities[ticker].Price
if qty>0 and self.limit_order is not None:
limit_price = last_price * (1 + self.limit_order)
self.LimitOrder(ticker, qty, limit_price)
else:
self.MarketOrder(ticker, qty)
def get_data(self, start, end, include_y=True):
tickers = list(self.ActiveSecurities.Keys)
history = self.History(tickers, start, end, self.resolution)
data = history[["close", "volume"]]
# calculate features
indicators = [ft.momentum(data, self.periods),
ft.strength(data, self.periods)]
features = ft.join_indicators(indicators)
target = data["close"].groupby("symbol").pct_change(1).shift(-1)
if include_y:
target = target.reindex_like(features).dropna()
return features.loc[target.index], target
else:
return features
"""
Crypto trading bot using maching learning
Minimalist version
@version: 0.10
"""
import clr
clr.AddReference("System")
clr.AddReference("QuantConnect.Algorithm")
clr.AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework.Execution import *
import pandas as pd
pd.set_option('mode.use_inf_as_na', True)
import features as ft
from sklearn.pipeline import Pipeline
from sklearn.decomposition import PCA
from sklearn.metrics import precision_score
from sklearn.preprocessing import MinMaxScaler
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
from timeseriescv import PurgedTimeSeriesSplitGroups
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import train_test_split as ttsplit
STEPS = [("scaler", MinMaxScaler()),
("model", LogisticRegression())]
PARAMS = {"model": [MLPClassifier(n_iter_no_change=5,
early_stopping=True,
hidden_layer_sizes=(64, 64)),
GradientBoostingClassifier(n_iter_no_change=5,
max_depth=5),
LogisticRegression()]}
class MLCryptoAlgo(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2018, 1, 1)
self.SetCash(100000)
self.SetBrokerageModel(BrokerageName.GDAX, AccountType.Cash)
self.resolution = Resolution.Daily
self.tickers = ["BTCUSD", "ETHUSD", "LTCUSD", "EOSUSD",
"XRPUSD", "ETCUSD", "BCHUSD", "ATOMUSD"] # NO ADA, DOT, SOL, XMR
self.SetBenchmark(self.CustomBenchmark)
[self.AddCrypto(t, self.resolution, Market.GDAX) for t in self.tickers]
self.periods = [1, 7, 14, 21, 28]
self.lookback = max(self.periods)
self.datapoints = 365 * 5
self.pos_size = 0.0
self.commissions = 0.002
self.model = None
self.Train(self.DateRules.WeekStart(), #self.DateRules.EveryDay(),
self.TimeRules.At(0, 30),
self.train_model)
self.Schedule.On(self.DateRules.EveryDay(),
self.TimeRules.At(1, 0), #self.TimeRules.Every(TimeSpan.FromHours(1)),
self.trade)
def CustomBenchmark(self, time):
bmk = [self.Securities[ticker].Price for ticker in self.tickers]
return sum(bmk)/len(self.tickers)
def train_model(self):
""" Train model with new data, model is created if missing """
x, y = self.get_data(self.datapoints, include_y=True)
if len(x) > 0 and len(y) > 0:
dates = x.index.get_level_values("time").sort_values()
train_dates, test_dates = ttsplit(dates.unique(), shuffle=False)
x_train = x[dates.isin(train_dates)]
y_train = y[dates.isin(train_dates)]
if self.model is None:
cv = PurgedTimeSeriesSplitGroups(n_splits=10,
purge_groups=self.lookback)
self.model = GridSearchCV(Pipeline(steps=STEPS), PARAMS,
scoring="precision", cv=cv)
groups = x_train.index.get_level_values("time")
self.model.fit(x_train, (y_train > 0), groups=groups)
self.Log(pd.DataFrame(self.model.cv_results_).to_string())
x_test = x[dates.isin(test_dates)]
y_test = y[dates.isin(test_dates)]
self.calc_kelly(x_test, (y_test > 0), y_test)
def calc_kelly(self, x, y, returns):
""" Calculate info needed for Kelly position sizing """
win_rate = precision_score(y, self.model.predict(x))
avg_win = max(returns[returns>0].mean()-2*self.commissions, 0)
avg_loss = max(-returns[returns<0].mean()+2*self.commissions, 0)
self.pos_size = min(max(win_rate/avg_loss-(1-win_rate)/avg_win, 0), 1)
self.Plot("Model", "Win Rate", win_rate)
self.Plot("Model", "Win Loss Ratio", avg_win/avg_loss)
self.Plot("Model", "Kelly Position", self.pos_size)
self.Debug(f"PT:{len(x)} WR:{win_rate:.3f} PS:{self.pos_size:.3f} "
f"AW:{avg_win:.4f} AL:{avg_loss:.4f}")
def trade(self):
x = self.get_data(self.lookback + 1, include_y=False)
if len(x) > 0 and self.model is not None:
symbols = x.index.get_level_values("symbol")
pred = pd.Series(self.model.predict(x), index=symbols)
self.Log(f"Predictions\n{pred.to_string()}")
self.Debug(f"Prediction symbols {len(symbols)}")
for symbol in pred.index:
self.SetHoldings(symbol, self.pos_size/len(symbols)) \
if pred[symbol] == 1 else self.SetHoldings(symbol, 0)
def get_data(self, datapoints=1, include_y=True):
tickers = list(self.ActiveSecurities.Keys)
data = self.History(tickers, datapoints, self.resolution)
# define data
data["volatility"] = data["high"] - data["low"]
data["spread"] = data["askclose"] - data["bidclose"]
price_mean = data[["open", "high", "low", "close"]].mean(axis=1)
price_volume = price_mean*data["volume"]
price_volume_sum = price_volume.rolling(self.lookback).sum()
volume_sum = data["volume"].rolling(self.lookback).sum()
data["vwap"] = price_volume_sum/volume_sum
data = data[["close", "volatility", "volume", "spread", "vwap"]]
# calculate features
features = ft.momentum(data, self.periods)
features += ft.strength(data, self.periods)
features += ft.macd(data, zip(self.periods[:-1], self.periods[1:]))
features += ft.minmax(data, self.periods[1:])
norm_feats = ["volatility", "spread", "vwap"]
data[norm_feats] = data[norm_feats].divide(data["close"], axis=0)
data["close"] = data["close"].groupby("symbol").pct_change(1)
data["volume"] = data["volume"].groupby("symbol").pct_change(1)
features += ft.sequence(data, self.lookback)
features = pd.concat(features, join="inner", axis="columns").dropna()
times = features.index.get_level_values("time") # TODO: Add to indicators
features["month"] = times.month
features["day"] = times.day / times.days_in_month
features["weekday"] = times.weekday
if include_y:
target = data["close"].groupby("symbol").shift(-1)
target = target.reindex_like(features).dropna()
return features.loc[target.index], target
else:
return features"""
Crypto trading bot using machine learning
Using online learning with Neural Network
@version: 0.16
"""
import datetime
import clr
clr.AddReference("System")
clr.AddReference("QuantConnect.Algorithm")
clr.AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework.Execution import *
import random
import pandas as pd
pd.set_option('mode.use_inf_as_na', True)
from sklearn.pipeline import Pipeline
from sklearn.metrics import precision_score
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPClassifier
import features as ft
from qcutils import SP500
STEPS = [("scaler", StandardScaler()),
("model", MLPClassifier(warm_start=True,
max_iter=1,
hidden_layer_sizes=(64, 64)))]
class MLCryptoAlgo(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2018, 1, 1)
self.SetCash(100000)
self.Settings.FreePortfolioValuePercentage = 0.05
self.resolution = Resolution.Daily
random.seed(42)
self.tickers = random.sample(SP500, 10)
[self.AddEquity(t, self.resolution) for t in self.tickers]
#self.AddEquity("SPY", self.resolution)
self.periods = [1, 5, 21]
self.train_days = timedelta(252 * 2)
self.test_days = timedelta(252 * 1)
self.test_start = None
self.pos_size = 0.0
self.commissions = 0.0
self.limit_order = None
self.model = Pipeline(steps=STEPS)
self.Train(self.DateRules.MonthStart(), #self.DateRules.EveryDay(),
self.TimeRules.At(0, 15),
self.train_model)
self.Schedule.On(self.DateRules.EveryDay(),
self.TimeRules.At(10, 0), #self.TimeRules.Every(TimeSpan.FromHours(1)),
self.trade)
def train_model(self):
""" Train model with new data, model is created if missing """
self.test_start = self.Time-self.test_days
train_start = self.test_start-self.train_days
x_train, y_train = self.get_data(train_start, self.test_start)
self.model.fit(x_train, (y_train > 0))
x_test, y_test = self.get_data(self.test_start, self.Time)
self.Log(f"Model score {self.model.score(x_test, (y_test > 0))}")
self.calc_kelly(x_test, (y_test > 0), y_test)
def calc_kelly(self, x, y, returns):
""" Calculate info needed for Kelly position sizing """
winrate = precision_score(y, self.model.predict(x))
avgwin = max(returns[returns > 0].mean() - 2 * self.commissions, 0)
avgloss = max(-returns[returns < 0].mean() + 2 * self.commissions, 0)
self.pos_size = winrate / avgloss - (1 - winrate) / avgwin
self.pos_size = min(max(self.pos_size, 0), 1)
self.Debug(f"PT:{len(x)} WR:{winrate:.3f} PS:{self.pos_size:.3f} "
f"AW:{avgwin:.4f} AL:{avgloss:.4f}")
self.Plot("Model", "Win Rate", winrate)
self.Plot("Model", "Win Loss Ratio", avgwin / avgloss)
self.Plot("Model", "Kelly Position", self.pos_size)
def trade(self):
x_pred = self.get_data(self.test_start, self.Time, include_y=False)
self.Transactions.CancelOpenOrders()
if len(x_pred) > 0 and self.model is not None:
x_pred = x_pred.sort_index().groupby("symbol").last()
tickers = x_pred.index.get_level_values("symbol")
pred = pd.Series(self.model.predict(x_pred), index=tickers)
self.Log(f"Predictions\n{pred.to_string()}")
self.Debug(f"{self.Time} - Predictions symbols {len(pred)} - {pred.mean():.2f}")
for ticker in pred.index:
target = self.pos_size / sum(pred) if pred[ticker] else 0
qty = self.CalculateOrderQuantity(ticker, target)
last_price = self.Securities[ticker].Price
if qty>0 and self.limit_order is not None:
limit_price = last_price * (1 + self.limit_order)
self.LimitOrder(ticker, qty, limit_price)
else:
self.MarketOrder(ticker, qty)
def get_data(self, start, end, include_y=True):
tickers = list(self.ActiveSecurities.Keys)
history = self.History(tickers, start, end, self.resolution)
data = history[["close", "volume"]]
# calculate features
indicators = [ft.momentum(data, self.periods),
ft.strength(data, self.periods)]
features = ft.join_indicators(indicators)
target = data["close"].groupby("symbol").pct_change(1).shift(-1)
if include_y:
target = target.reindex_like(features).dropna()
return features.loc[target.index], target
else:
return features
"""
Trading bot using machine learning
Testing different bars types
@version: 0.17
"""
import datetime
import clr
clr.AddReference("System")
clr.AddReference("QuantConnect.Algorithm")
clr.AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework.Execution import *
import random
import pandas as pd
pd.set_option('mode.use_inf_as_na', True)
from sklearn.pipeline import Pipeline
from sklearn.metrics import precision_score
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPClassifier
import features as ft
from qcutils import SP500
STEPS = [("scaler", StandardScaler()),
("model", MLPClassifier(warm_start=True,
max_iter=1,
hidden_layer_sizes=(64, 64)))]
class MLCryptoAlgo(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2018, 1, 1)
self.SetCash(100000)
self.Settings.FreePortfolioValuePercentage = 0.05
self.resolution = Resolution.Hour
self.bar_size = 24
random.seed(42)
self.tickers = random.sample(SP500, 10)
[self.AddEquity(t, self.resolution) for t in self.tickers]
#self.AddEquity("SPY", self.resolution)
self.periods = [1, 5, 21]
self.train_days = timedelta(252 * 2)
self.test_days = timedelta(252 * 1)
self.test_start = None
self.pos_size = 0.0
self.commissions = 0.0
self.limit_order = None
self.model = Pipeline(steps=STEPS)
self.Train(self.DateRules.MonthStart(), #self.DateRules.EveryDay(),
self.TimeRules.At(0, 15),
self.train_model)
self.Schedule.On(self.DateRules.EveryDay(),
self.TimeRules.At(10, 0), #self.TimeRules.Every(TimeSpan.FromHours(1)),
self.trade)
def train_model(self):
""" Train model with new data, model is created if missing """
self.test_start = self.Time-self.test_days
train_start = self.test_start-self.train_days
x_train, y_train = self.get_data(train_start, self.test_start)
self.model.fit(x_train, (y_train > 0))
x_test, y_test = self.get_data(self.test_start, self.Time)
self.Log(f"Model score {self.model.score(x_test, (y_test > 0))}")
self.calc_kelly(x_test, (y_test > 0), y_test)
def calc_kelly(self, x, y, returns):
""" Calculate info needed for Kelly position sizing """
winrate = precision_score(y, self.model.predict(x))
avgwin = max(returns[returns > 0].mean() - 2 * self.commissions, 0)
avgloss = max(-returns[returns < 0].mean() + 2 * self.commissions, 0)
self.pos_size = winrate / avgloss - (1 - winrate) / avgwin
self.pos_size = min(max(self.pos_size, 0), 1)
self.Debug(f"PT:{len(x)} WR:{winrate:.3f} PS:{self.pos_size:.3f} "
f"AW:{avgwin:.4f} AL:{avgloss:.4f}")
self.Plot("Model", "Win Rate", winrate)
self.Plot("Model", "Win Loss Ratio", avgwin / avgloss)
self.Plot("Model", "Kelly Position", self.pos_size)
def trade(self):
x_pred = self.get_data(self.test_start, self.Time, include_y=False)
self.Transactions.CancelOpenOrders()
if len(x_pred) > 0 and self.model is not None:
x_pred = x_pred.sort_index().groupby("symbol").last()
tickers = x_pred.index.get_level_values("symbol")
pred = pd.Series(self.model.predict(x_pred), index=tickers)
self.Log(f"Predictions\n{pred.to_string()}")
self.Debug(f"{self.Time} - Predictions symbols {len(pred)} - {pred.mean():.2f}")
for ticker in pred.index:
target = self.pos_size / sum(pred) if pred[ticker] else 0
qty = self.CalculateOrderQuantity(ticker, target)
last_price = self.Securities[ticker].Price
if qty>0 and self.limit_order is not None:
limit_price = last_price * (1 + self.limit_order)
self.LimitOrder(ticker, qty, limit_price)
else:
self.MarketOrder(ticker, qty)
def get_data(self, start, end, include_y=True):
tickers = list(self.ActiveSecurities.Keys)
history = self.History(tickers, start, end, self.resolution)
data = ft.volume_bars(history, bar_size=self.bar_size)
data = data[["close", "volume"]]
# calculate features
indicators = [ft.momentum(data, self.periods),
ft.strength(data, self.periods)]
features = ft.join_indicators(indicators)
target = data["close"].groupby("symbol").pct_change(1).shift(-1)
if include_y:
target = target.reindex_like(features).dropna()
return features.loc[target.index], target
else:
return features
"""
Crypto trading bot using maching learning
Implementing Kelly criterion
@version: 0.5
"""
import clr
clr.AddReference("System")
clr.AddReference("QuantConnect.Algorithm")
clr.AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework.Execution import *
import pickle
import pandas as pd
pd.set_option('mode.use_inf_as_na', True)
from sklearn.pipeline import Pipeline
from sklearn.decomposition import PCA
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
from sklearn.model_selection import RandomizedSearchCV
from timeseriessplitgroups import TimeSeriesSplitGroups
from sklearn.metrics import get_scorer, average_precision_score
STEPS = [("pca", PCA()),
("mlp", MLPClassifier(n_iter_no_change=1, max_iter=100,
solver="adam", early_stopping=True,
warm_start=True, validation_fraction=0.2))]
PARAMS = {"pca__n_components": [None, 0.9],
"mlp__activation": ["logistic", "relu"],
"mlp__alpha": [0.1, 0.01, 0.001, 0.0001, 0],
"mlp__hidden_layer_sizes": [[96, ], [48, 48], [32, 32, 32]]}
class MLCryptoAlgo(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2019, 1, 1)
self.SetCash(100000)
self.SetBrokerageModel(BrokerageName.Bitfinex, AccountType.Cash)
self.Settings.FreePortfolioValuePercentage = 0.05
self.resolution = Resolution.Daily
self.SetBenchmark(SecurityType.Crypto, "BTCUSD")
#tickers = ["BTCUSD", "ETHUSD", "LTCUSD",
# "EOSUSD", "XMRUSD", "XRPUSD"] # NO BCH, ADA, DOT, ATOM
tickers = ["BTCUSD"]
[self.AddCrypto(t, self.resolution, Market.Bitfinex) for t in tickers]
self.lookbacks = [1, 7, 15, 30, 90]
self.datapoints = 365 * 5
self.commissions = 0.005
self.model = None
self.model_key = "crypto_btc"
if self.ObjectStore.ContainsKey(self.model_key):
model_buffer = self.ObjectStore.ReadBytes(self.model_key)
self.Log(f"Loading model {self.model_key}")
self.model = pickle.loads(bytes(model_buffer))
self.pos_size = 1.0/len(tickers)
self.Train(self.DateRules.WeekStart(),
self.TimeRules.At(0, 0),
self.train_model)
self.Schedule.On(self.DateRules.EveryDay(),
self.TimeRules.At(0, 0),
self.trade)
def train_model(self):
""" Train model with new data, model is created if missing """
if self.model is None:
cv = TimeSeriesSplitGroups(n_splits=10)
self.model = RandomizedSearchCV(Pipeline(steps=STEPS), PARAMS,
scoring="average_precision",
cv=cv, n_iter=10, n_jobs=1)
x, y = self.get_data(self.datapoints, include_y=True)
if len(x) > 0 and len(y) > 0:
x_train, x_test, y_train, y_test = train_test_split(x, y, shuffle=False)
groups = x_train.index.get_level_values("time")
self.model.fit(x_train, (y_train>0), groups=groups)
self.ObjectStore.SaveBytes(self.model_key, pickle.dumps(self.model))
self.calc_kelly(x_test, (y_test>0), y_test)
self.Log(classification_report((y_test>0), self.model.predict(x_test)))
self.Plot("Model", "Precision", float(self.model.best_score_))
def calc_kelly(self, x, y, returns):
""" Calculate info needed for Kelly position sizing """
y_pred = self.model.predict(x)
win_rate = average_precision_score(y_pred, y)
#self.Plot("Model", "Win Rate", float(win_rate))
avg_gain = returns[returns>0].mean()-self.commissions
avg_loss = -(returns[returns<0].mean()-self.commissions)
win_loss_ratio = avg_gain/avg_loss
self.pos_size = max(win_rate-(1-win_rate)/win_loss_ratio, 0)
symbols_nr = len(y.index.get_level_values("symbol").unique())
self.pos_size = min(self.pos_size, 1.0/symbols_nr)
self.Log(f"Win Rate {win_rate} - Pos Size {self.pos_size}")
#self.Plot("Model", "Kelly Size", float(self.pos_size))
def trade(self):
x = self.get_data(max(self.lookbacks) + 1, include_y=False)
if len(x) > 0 and self.model is not None:
symbols = x.index.get_level_values("symbol")
pred = pd.Series(self.model.predict(x), index=symbols).sort_values()
for symbol in pred.index:
self.Log(f"Signal for {symbol}: {pred[symbol]}")
if pred[symbol]==1:
self.SetHoldings(symbol, self.pos_size)
elif pred[symbol]==-1:
self.SetHoldings(symbol, 0)
def get_data(self, datapoints=1, include_y=True):
tickers = list(self.ActiveSecurities.Keys)
data = self.History(tickers, datapoints, self.resolution)
data["volatility"] = data["high"] - data["low"]
data["spread"] = data["askclose"] - data["bidclose"]
data = data[["close", "volatility", "volume", "spread"]]
groups = data.groupby("symbol")
features = [groups.pct_change(p) for p in self.lookbacks] # Momentum
features += [data / groups.apply(lambda x: x.rolling(p).mean())
for p in self.lookbacks] # Feats normalized by their average
features = pd.concat(features, join="inner", axis="columns").dropna()
if include_y:
target = groups["close"].pct_change(1).shift(-1)
target = target.reindex_like(features).dropna()
return features.loc[target.index], target
else:
return features
"""
Crypto trading bot using maching learning
Limit and Stop loss order
@version: 0.2
"""
import clr
clr.AddReference("System")
clr.AddReference("QuantConnect.Algorithm")
clr.AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework.Execution import *
import pandas as pd
pd.set_option('mode.use_inf_as_na', True)
from sklearn.pipeline import Pipeline
from sklearn.decomposition import PCA
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import RandomizedSearchCV
from timeseriessplitgroups import TimeSeriesSplitGroups
STEPS = [("pca", PCA()),
("mlp", MLPClassifier(n_iter_no_change=1, max_iter=100,
solver="adam", early_stopping=True,
warm_start=True, validation_fraction=0.2))]
PARAMS = {"pca__n_components": [None, 0.9],
"mlp__activation": ["logistic", "relu"],
"mlp__alpha": [0.1, 0.01, 0.001, 0.0001, 0],
"mlp__hidden_layer_sizes": [[96, ], [48, 48], [32, 32, 32]]}
# TODO: Add Trailing Stop https://www.quantconnect.com/docs/algorithm-reference/trading-and-orders#Trading-and-Orders-Updating-Orders
class MLCryptoAlgo(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2018, 1, 1)
self.SetCash(100000)
self.SetBrokerageModel(BrokerageName.GDAX, AccountType.Cash)
self.lookbacks = [1, 8, 24, 24*7, 24*30]
self.datapoints = 365 * 24
self.model = None
self.limit_margin = 0.01
self.stop_margin = 0.01
self.resolution = Resolution.Hour
self.SetBenchmark(SecurityType.Crypto, "BTCUSD")
tickers = ["BTCUSD"]
[self.AddCrypto(t, self.resolution, Market.GDAX) for t in tickers]
self.pos_size = 1.0 / (len(tickers) * (1+self.limit_margin)) # Accounting for available cash
self.Train(self.DateRules.MonthStart(),
self.TimeRules.At(0, 0),
self.train_model)
self.Schedule.On(self.DateRules.EveryDay(),
self.TimeRules.Every(timedelta(minutes=60)),
#self.TimeRules.At(1, 0),
self.trade)
def train_model(self):
""" Train model with new data, model is created if missing """
if self.model is None:
cv = TimeSeriesSplitGroups(n_splits=10)
self.model = RandomizedSearchCV(Pipeline(steps=STEPS), PARAMS,
scoring="accuracy", cv=cv,
n_iter=10, n_jobs=1)
x, y = self.get_data(self.datapoints, include_y=True)
if len(x) > 0 and len(y) > 0:
groups = x.index.get_level_values("time")
self.model.fit(x, y, groups=groups)
self.Plot("Model", "Accuracy", float(self.model.best_score_))
def trade(self):
self.Transactions.CancelOpenOrders()
x = self.get_data(max(self.lookbacks) + 1, include_y=False)
if len(x) > 0 and self.model is not None:
y = pd.Series(self.model.predict_proba(x)[:, 1],
index=x.index)
to_buy = y[y >= 0.5].index.get_level_values("symbol")
for symbol in self.ActiveSecurities.Keys:
if str(symbol.ID) in to_buy:
pos_size, side = self.pos_size, +1
else:
pos_size, side = 0, -1
qty_order = self.CalculateOrderQuantity(symbol, pos_size)
if qty_order != 0:
price = self.Securities[symbol].Price
limit = round(price * (1+side*self.limit_margin), 2)
stop = round(price * (1-side*self.stop_margin), 2)
self.StopLimitOrder(symbol, qty_order, stop, limit)
def get_data(self, datapoints=1, include_y=True):
tickers = list(self.ActiveSecurities.Keys)
data = self.History(tickers, datapoints, self.resolution)
data["volatility"] = data["high"] - data["low"]
data["spread"] = data["askclose"] - data["bidclose"]
data = data[["close", "volatility", "volume", "spread"]]
groups = data.groupby("symbol")
features = [groups.pct_change(p) for p in self.lookbacks] # Momentum
features += [data / groups.apply(lambda x: x.rolling(p).mean())
for p in self.lookbacks] # Feats normalized by their average
features = pd.concat(features, join="inner", axis="columns").dropna()
if include_y:
target = groups["close"].pct_change(1).shift(-1)
target = target.reindex_like(features).dropna()
return features.loc[target.index], (target > 0).astype("float")
else:
return features"""
Crypto trading bot using maching learning
@version: 0.1
"""
import clr
clr.AddReference("System")
clr.AddReference("QuantConnect.Algorithm")
clr.AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
import pandas as pd
pd.set_option('mode.use_inf_as_na', True)
from sklearn.pipeline import Pipeline
from sklearn.decomposition import PCA
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import RandomizedSearchCV
from timeseriessplitgroups import TimeSeriesSplitGroups
STEPS = [("pca", PCA()),
("mlp", MLPClassifier(n_iter_no_change=1, max_iter=100,
solver="adam", early_stopping=True,
warm_start=True, validation_fraction=0.2))]
PARAMS = {"pca__n_components": [None, 0.9],
"mlp__activation": ["logistic", "relu"],
"mlp__alpha": [0.1, 0.01, 0.001, 0.0001, 0],
"mlp__hidden_layer_sizes": [[96, ], [48, 48], [32, 32, 32]]}
class MLCryptoAlgo(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2018, 1, 1)
self.SetCash(100000)
self.SetBrokerageModel(BrokerageName.GDAX, AccountType.Cash)
self.lookbacks = [1, 2, 4, 8, 24, 24*7, 24*15, 24*30]
self.datapoints = 24 * 365
self.model = None
self.resolution = Resolution.Daily
self.SetBenchmark(SecurityType.Crypto, "BTCUSD")
tickers = ["BTCUSD"]
[self.AddCrypto(ticker, self.resolution, Market.GDAX)
for ticker in tickers]
self.position_size = 1.0/len(tickers)
self.Train(self.DateRules.MonthStart(),
self.TimeRules.At(0, 0),
self.train_model)
self.Schedule.On(self.DateRules.EveryDay(),
self.TimeRules.Every(timedelta(minutes=60)),
#self.TimeRules.At(10,0,0),
self.trade)
def train_model(self):
""" Train model with new data, model is created if missing """
if self.model is None:
cv = TimeSeriesSplitGroups(n_splits=10)
self.model = RandomizedSearchCV(Pipeline(steps=STEPS), PARAMS,
scoring="accuracy", cv=cv,
n_iter=10, n_jobs=1)
x, y = self.get_data(self.datapoints, include_y=True)
if len(x)>0 and len(y)>0:
groups = x.index.get_level_values("time")
self.model.fit(x, y, groups=groups)
self.Plot("Model", "Accuracy", float(self.model.best_score_))
self.Debug(f"{self.Time} Model {self.model.best_score_:.1%}")
def trade(self):
x = self.get_data(max(self.lookbacks) + 1, include_y=False)
if len(x) > 0:
y = pd.Series(self.model.predict_proba(x)[:, 1],
index=x.index,
name="Signal")
to_buy = y[y >= 0.5].index.get_level_values("symbol")
for symbol in self.ActiveSecurities.Keys:
self.SetHoldings(symbol, self.position_size) if str(symbol.ID) in to_buy else self.Liquidate(symbol)
def get_data(self, datapoints=1, include_y=True):
tickers = list(self.ActiveSecurities.Keys)
data = self.History(tickers, datapoints, self.resolution)
data["volatility"] = data["high"] - data["low"]
data["spread"] = data["askclose"] - data["bidclose"]
data = data[["close", "volatility", "volume", "spread"]]
groups = data.groupby("symbol")
features = [groups.pct_change(p) for p in self.lookbacks] # Momentum
features += [data/groups.apply(lambda x: x.rolling(p).mean())
for p in self.lookbacks] # Feats normalized by their average
features = pd.concat(features, join="inner", axis="columns").dropna()
if include_y:
target = groups["close"].pct_change(1).shift(-1)
target = target.reindex_like(features).dropna()
return features.loc[target.index], (target > 0).astype("float")
else:
return features"""
Crypto trading bot using maching learning
Minimalist version
@version: 0.9
"""
import clr
clr.AddReference("System")
clr.AddReference("QuantConnect.Algorithm")
clr.AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework.Execution import *
import pandas as pd
pd.set_option('mode.use_inf_as_na', True)
from sklearn.pipeline import Pipeline
from sklearn.decomposition import PCA
from sklearn.metrics import precision_score
from sklearn.preprocessing import MinMaxScaler
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
from timeseriescv import PurgedTimeSeriesSplitGroups
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import train_test_split as ttsplit
STEPS = [("scaler", MinMaxScaler()),
("pca", PCA()),
("model", LogisticRegression())]
PARAMS = {"pca__n_components": [1, 0.99],
"model": [MLPClassifier(n_iter_no_change=5,
early_stopping=True,
hidden_layer_sizes=(100,100)),
GradientBoostingClassifier(n_iter_no_change=5,
max_depth=5),
LogisticRegression()]}
class MLCryptoAlgo(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2018, 1, 1)
self.SetCash(100000)
self.SetBrokerageModel(BrokerageName.Bitfinex, AccountType.Cash)
self.resolution = Resolution.Daily
self.tickers = ["BTCUSD", "ETHUSD", "LTCUSD", "EOSUSD", "XMRUSD",
"XRPUSD", "XLMUSD", "TRXUSD", "ETCUSD", "DAIUSD"] # NO BCH, ADA, DOT, ATOM
self.SetBenchmark(self.CustomBenchmark)
[self.AddCrypto(t, self.resolution, Market.Bitfinex) for t in self.tickers]
self.lookbacks = [1, 3, 5, 7, 15, 30]
self.datapoints = 365 * 1
self.pos_size = 0.0
self.commissions = 0.002
self.model = None
self.Train(self.DateRules.WeekStart(), #self.DateRules.EveryDay(),
self.TimeRules.At(0, 30),
self.train_model)
self.Schedule.On(self.DateRules.EveryDay(),
self.TimeRules.At(1, 0), #self.TimeRules.Every(TimeSpan.FromHours(1)),
self.trade)
def CustomBenchmark(self, time):
bmk = [self.Securities[ticker].Price for ticker in self.tickers]
return sum(bmk)/len(self.tickers)
def train_model(self):
""" Train model with new data, model is created if missing """
x, y = self.get_data(self.datapoints, include_y=True)
if len(x) > 0 and len(y) > 0:
dates = x.index.get_level_values("time").sort_values()
train_dates, test_dates = ttsplit(dates.unique(), shuffle=False)
x_train = x[dates.isin(train_dates)]
y_train = y[dates.isin(train_dates)]
if self.model is None:
cv = PurgedTimeSeriesSplitGroups(n_splits=10,
purge_groups=max(self.lookbacks))
self.model = GridSearchCV(Pipeline(steps=STEPS), PARAMS,
scoring="precision", cv=cv)
groups = x_train.index.get_level_values("time")
self.model.fit(x_train, (y_train > 0), groups=groups)
self.Log(pd.DataFrame(self.model.cv_results_).to_string())
x_test = x[dates.isin(test_dates)]
y_test = y[dates.isin(test_dates)]
#self.calc_kelly(x_test, (y_test > 0), y_test)
def calc_kelly(self, x, y, returns):
""" Calculate info needed for Kelly position sizing """
win_rate = precision_score(y, self.model.predict(x))
avg_win = max(returns[returns>0].mean()-2*self.commissions, 0)
avg_loss = -returns[returns<0].mean()+2*self.commissions
self.pos_size = min(max(win_rate/avg_loss-(1-win_rate)/avg_win, 0), 1)
self.Plot("Model", "Win Rate", win_rate)
self.Plot("Model", "Win Loss Ratio", avg_win/avg_loss)
self.Plot("Model", "Kelly Position", self.pos_size)
self.Debug(f"PT:{len(x)} WR:{win_rate:.3f} PS:{self.pos_size:.3f} "
f"AW:{avg_win:.4f} AL:{avg_loss:.4f}")
def trade(self):
x = self.get_data(max(self.lookbacks) + 1, include_y=False)
if len(x) > 0 and self.model is not None:
symbols = x.index.get_level_values("symbol")
pred = pd.Series(self.model.predict_proba(x)[:,1], index=symbols)
self.Log(f"Predictions\n{pred.to_string()}")
[self.SetHoldings(symbol, round(pred[symbol],3)/len(symbols))
for symbol in pred.index]
def trade_OLD(self):
x = self.get_data(max(self.lookbacks) + 1, include_y=False)
if len(x) > 0 and self.model is not None:
symbols = x.index.get_level_values("symbol")
pred = pd.Series(self.model.predict(x), index=symbols)
self.Log(f"Predictions\n{pred.to_string()}")
[self.SetHoldings(symbol, self.pos_size/len(symbols)) if pred[symbol] == 1 \
else self.SetHoldings(symbol, 0) for symbol in pred.index]
def get_data(self, datapoints=1, include_y=True):
tickers = list(self.ActiveSecurities.Keys)
data = self.History(tickers, datapoints, self.resolution)
data["volatility"] = (data["high"] - data["low"])/data["close"]
data["spread"] = (data["askclose"] - data["bidclose"])/data["close"]
price_volume = data[["open", "high","low","close"]].mean(axis=1)*data["volume"]
data["vwap"] = price_volume.rolling(max(self.lookbacks)).sum() / \
data["volume"].rolling(max(self.lookbacks)).sum()
data["vwap"] /= data["close"]
data["close"] = data["close"].groupby("symbol").pct_change(1)
data["volume"] = data["volume"].groupby("symbol").pct_change(1)
data = data[["close", "volatility", "volume", "spread", "vwap"]]
groups = data.groupby("symbol")
features = [groups.shift(s) for s in range(max(self.lookbacks))]
features = pd.concat(features, join="inner", axis="columns").dropna()
times = features.index.get_level_values("time")
features["month"] = times.month
features["day"] = times.day / times.days_in_month
features["weekday"] = times.weekday
if include_y:
target = groups["close"].shift(-1)
target = target.reindex_like(features).dropna()
return features.loc[target.index], target
else:
return features"""
Crypto trading bot using maching learning
Using PurgedTimeSeriesSplitGroups
@version: 0.6
"""
import clr
clr.AddReference("System")
clr.AddReference("QuantConnect.Algorithm")
clr.AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework.Execution import *
import pickle
import pandas as pd
pd.set_option('mode.use_inf_as_na', True)
from sklearn.pipeline import Pipeline
from sklearn.decomposition import PCA
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import average_precision_score
from sklearn.model_selection import train_test_split
from timeseriescv import PurgedTimeSeriesSplitGroups
from sklearn.model_selection import RandomizedSearchCV
STEPS = [("pca", PCA()),
("mlp", MLPClassifier(n_iter_no_change=1, max_iter=1000,
solver="adam", early_stopping=True,
warm_start=True, validation_fraction=0.2))]
PARAMS = {"pca__n_components": [None, 0.9],
"mlp__alpha": [0.01, 0.001, 0],
"mlp__hidden_layer_sizes": [[96, ], [48, 48], [32, 32, 32]]}
class MLCryptoAlgo(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2018, 1, 1)
self.SetCash(100000)
self.SetBrokerageModel(BrokerageName.Bitfinex, AccountType.Cash)
self.Settings.FreePortfolioValuePercentage = 0.05
self.resolution = Resolution.Hour
self.SetBenchmark(SecurityType.Crypto, "BTCUSD")
tickers = ["BTCUSD", "ETHUSD", "LTCUSD",
"EOSUSD", "XMRUSD", "XRPUSD"] # NO BCH, ADA, DOT, ATOM
[self.AddCrypto(t, self.resolution, Market.Bitfinex) for t in tickers]
self.lookbacks = [1, 4, 8, 24, 24*7]
self.datapoints = 365 * 24
#self.commissions = 0.005
self.pos_size = 1.0 / len(tickers)
self.model = None
self.model_key = "crypto_multi_hour"
if self.ObjectStore.ContainsKey(self.model_key):
model_buffer = self.ObjectStore.ReadBytes(self.model_key)
self.Log(f"Loading model {self.model_key}")
self.model = pickle.loads(bytes(model_buffer))
self.Train(self.DateRules.WeekStart(),
self.TimeRules.At(0, 30),
self.train_model)
self.Schedule.On(self.DateRules.EveryDay(),
#self.TimeRules.At(0, 0),
self.TimeRules.Every(TimeSpan.FromHours(1)),
self.trade)
def train_model(self):
""" Train model with new data, model is created if missing """
if self.model is None:
cv = PurgedTimeSeriesSplitGroups(n_splits=10,
purge_groups=max(self.lookbacks))
self.model = RandomizedSearchCV(Pipeline(steps=STEPS), PARAMS,
scoring="accuracy",
cv=cv, n_iter=10, n_jobs=-1)
x, y = self.get_data(self.datapoints, include_y=True)
if len(x) > 0 and len(y) > 0:
x_train, x_test, y_train, y_test = train_test_split(x, y, shuffle=False)
groups = x_train.index.get_level_values("time")
self.model.fit(x_train, (y_train>0), groups=groups)
self.ObjectStore.SaveBytes(self.model_key, pickle.dumps(self.model))
self.calc_kelly(x_test, (y_test > 0), y_test)
self.Log(classification_report((y_test > 0), self.model.predict(x_test)))
def calc_kelly(self, x, y, returns):
""" Calculate info needed for Kelly position sizing """
win_rate = self.model.best_score_
avg_gain = returns[returns>0].mean()
avg_loss = -returns[returns<0].mean()
win_loss_ratio = avg_gain/avg_loss
kelly_pos = win_rate-(1-win_rate)/win_loss_ratio
symbols_nr = len(y.index.get_level_values("symbol").unique())
self.pos_size = max(kelly_pos, 0)/symbols_nr
self.Plot("Model", "Win Rate", float(win_rate))
self.Plot("Model", "Win Loss Ratio", float(win_loss_ratio))
self.Plot("Model", "Kelly Position", float(kelly_pos))
self.Debug(f"WR:{win_rate:.3f} WLR:{win_loss_ratio:.3f} PS:{self.pos_size:.3f}")
def trade(self):
x = self.get_data(max(self.lookbacks) + 1, include_y=False)
if len(x) > 0 and self.model is not None:
symbols = x.index.get_level_values("symbol")
pred = pd.Series(self.model.predict(x), index=symbols).sort_values()
for symbol in pred.index:
self.Log(f"Signal for {symbol}: {pred[symbol]}")
if pred[symbol] == 1:
self.SetHoldings(symbol, self.pos_size)
elif pred[symbol] == -1:
self.SetHoldings(symbol, 0)
def get_data(self, datapoints=1, include_y=True):
tickers = list(self.ActiveSecurities.Keys)
data = self.History(tickers, datapoints, self.resolution)
data["volatility"] = data["high"] - data["low"]
data["spread"] = data["askclose"] - data["bidclose"]
data = data[["close", "volatility", "volume", "spread"]]
groups = data.groupby("symbol")
features = [groups.pct_change(p) for p in self.lookbacks] # Momentum
features += [data / groups.apply(lambda x: x.rolling(p).mean())
for p in self.lookbacks] # Feats normalized by their average
features = pd.concat(features, join="inner", axis="columns").dropna()
if include_y:
target = groups["close"].pct_change(1).shift(-1)
target = target.reindex_like(features).dropna()
return features.loc[target.index], target
else:
return features"""
Crypto trading bot using machine learning
Using online learning with Neural Network
@version: 0.15
"""
import datetime
import clr
clr.AddReference("System")
clr.AddReference("QuantConnect.Algorithm")
clr.AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework.Execution import *
import pandas as pd
pd.set_option('mode.use_inf_as_na', True)
from sklearn.pipeline import Pipeline
from sklearn.metrics import precision_score
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPClassifier
import features as ft
STEPS = [("scaler", StandardScaler()),
("model", MLPClassifier(warm_start=True,
max_iter=10,
hidden_layer_sizes=(64, 64)))]
class MLCryptoAlgo(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2018, 1, 1)
self.SetCash(100000)
self.SetBrokerageModel(BrokerageName.GDAX, AccountType.Cash)
self.Settings.FreePortfolioValuePercentage = 0.05
self.resolution = Resolution.Daily
self.tickers = ["BTCUSD", "ETHUSD", "LTCUSD", "XRPUSD", "BCHUSD"]
self.SetBenchmark(self.CustomBenchmark)
[self.AddCrypto(t, self.resolution, Market.GDAX) for t in self.tickers]
self.periods = [1, 7, 30]
self.train_days = timedelta(365 * 2)
self.test_days = timedelta(365 * 1)
self.test_start = None
self.possize = 0.0
self.commissions = 0.002
self.model = Pipeline(steps=STEPS)
self.Train(self.DateRules.WeekStart(), #self.DateRules.EveryDay(),
self.TimeRules.At(0, 15),
self.train_model)
self.Schedule.On(self.DateRules.EveryDay(),
self.TimeRules.At(0, 30), #self.TimeRules.Every(TimeSpan.FromHours(1)),
self.trade)
def CustomBenchmark(self, time):
bmk = [self.Securities[ticker].Price for ticker in self.tickers]
return sum(bmk)/len(self.tickers)
def train_model(self):
""" Train model with new data, model is created if missing """
self.test_start = self.Time-self.test_days
train_start = self.test_start-self.train_days
x_train, y_train = self.get_data(train_start, self.test_start)
self.model.fit(x_train, (y_train > 0))
x_test, y_test = self.get_data(self.test_start, self.Time)
self.Log(f"Model score {self.model.score(x_test, (y_test > 0))}")
self.calc_kelly(x_test, (y_test > 0), y_test)
def calc_kelly(self, x, y, returns):
""" Calculate info needed for Kelly position sizing """
winrate = precision_score(y, self.model.predict(x))
avgwin = max(returns[returns > 0].mean() - 2 * self.commissions, 0)
avgloss = max(-returns[returns < 0].mean() + 2 * self.commissions, 0)
self.possize = winrate / avgloss - (1 - winrate) / avgwin
self.possize = min(max(self.possize, 0), 1)
self.Debug(f"PT:{len(x)} WR:{winrate:.3f} PS:{self.possize:.3f} "
f"AW:{avgwin:.4f} AL:{avgloss:.4f}")
self.Plot("Model", "Win Rate", winrate)
self.Plot("Model", "Win Loss Ratio", avgwin / avgloss)
self.Plot("Model", "Kelly Position", self.possize)
def trade(self):
x_pred = self.get_data(self.test_start, self.Time, include_y=False)
self.Transactions.CancelOpenOrders()
if len(x_pred) > 0 and self.model is not None:
x_pred = x_pred.sort_index().groupby("symbol").last()
tickers = x_pred.index.get_level_values("symbol")
pred = pd.Series(self.model.predict(x_pred), index=tickers)
self.Log(f"Predictions\n{pred.to_string()}")
self.Debug(f"{self.Time} - Predictions symbols {len(pred)}")
for ticker in pred.index:
target = self.possize / sum(pred) if pred[ticker] else 0
qty = self.CalculateOrderQuantity(ticker, target)
self.LimitOrder(ticker, qty, self.Securities[ticker].Price)
def get_data(self, start, end, include_y=True):
tickers = list(self.ActiveSecurities.Keys)
history = self.History(tickers, start, end, self.resolution)
# define data
history["volatility"] = history["high"] - history["low"]
history["vwap"] = ft.vwap(history, max(self.periods))
data = history[["close", "volatility", "volume", "vwap"]]
# calculate features
indicators = [ft.momentum(data, self.periods),
ft.strength(data, self.periods),
ft.macd(data, zip(self.periods[:-1], self.periods[1:])),
ft.minmax(data, self.periods[1:])]
new_indicators = [ft.diff(i, self.periods[1:]) for i in indicators]
#new_indicators += [ft.std(i, self.periods[1:]) for i in indicators] # TODO: Fix STD
features = ft.join_indicators(indicators+new_indicators+[ft.time(data)])
target = data["close"].groupby("symbol").pct_change(1).shift(-1)
if include_y:
target = target.reindex_like(features).dropna()
return features.loc[target.index], target
else:
return features
"""
Crypto trading bot using maching learning
New models and modified Kelly Criterion
@version: 0.7
"""
import clr
clr.AddReference("System")
clr.AddReference("QuantConnect.Algorithm")
clr.AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework.Execution import *
import pickle
import pandas as pd
pd.set_option('mode.use_inf_as_na', True)
from sklearn.pipeline import Pipeline
from sklearn.decomposition import PCA
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import average_precision_score
from timeseriescv import PurgedTimeSeriesSplitGroups
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import train_test_split as ttsplit
STEPS = [("pca", PCA(n_components=0.99)),
("model", LogisticRegression())]
PARAMS = {"pca__n_components": [1, 0.99, 0.8],
"model": [MLPClassifier(n_iter_no_change=1, early_stopping=True),
GradientBoostingClassifier(n_iter_no_change=1),
LogisticRegression()]}
class MLCryptoAlgo(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2018, 1, 1)
self.SetCash(100000)
self.SetBrokerageModel(BrokerageName.Bitfinex, AccountType.Cash)
self.resolution = Resolution.Daily
self.SetBenchmark(SecurityType.Crypto, "BTCUSD")
self.tickers = ["BTCUSD", "ETHUSD", "LTCUSD", "EOSUSD", "XMRUSD", "XRPUSD"] # NO BCH, ADA, DOT, ATOM
[self.AddCrypto(t, self.resolution, Market.Bitfinex)
for t in self.tickers]
self.lookbacks = [1, 7, 15, 31, 63]
self.datapoints = 365 * 5
self.pos_size = 0.0
self.commissions = 0.002
self.model = None
self.model_key = "crypto_multi_daily"
if self.ObjectStore.ContainsKey(self.model_key):
model_buffer = self.ObjectStore.ReadBytes(self.model_key)
self.Log(f"Loading model {self.model_key}")
self.model = pickle.loads(bytes(model_buffer))
self.Train(self.DateRules.WeekStart(), #self.DateRules.EveryDay(),
self.TimeRules.At(0, 30),
self.train_model)
self.Schedule.On(self.DateRules.EveryDay(),
self.TimeRules.At(0, 0), #self.TimeRules.Every(TimeSpan.FromHours(1)),
self.trade)
def train_model(self):
""" Train model with new data, model is created if missing """
if self.model is None:
cv = PurgedTimeSeriesSplitGroups(n_splits=10,
purge_groups=max(self.lookbacks))
self.model = GridSearchCV(Pipeline(steps=STEPS), PARAMS,
scoring="average_precision", cv=cv)
x, y = self.get_data(self.datapoints, include_y=True)
if len(x) > 0 and len(y) > 0:
dates = x.index.get_level_values("time")
train_dates, test_dates = ttsplit(dates.unique(), shuffle=False)
x_train = x[dates.isin(train_dates)]
y_train = y[dates.isin(train_dates)]
groups = x_train.index.get_level_values("time")
self.model.fit(x_train, (y_train > 0), groups=groups)
self.Log(pd.DataFrame(self.model.cv_results_))
self.ObjectStore.SaveBytes(self.model_key, pickle.dumps(self.model))
x_test = x[dates.isin(test_dates)]
y_test = y[dates.isin(test_dates)]
self.calc_kelly(x_test, (y_test > 0), y_test)
def calc_kelly(self, x, y, returns):
""" Calculate info needed for Kelly position sizing """
win_rate = average_precision_score(y, self.model.predict(x))
avg_win = max(returns[returns>0].mean()-2*self.commissions, 0)
avg_loss = -returns[returns<0].mean()+2*self.commissions
self.pos_size = min(max(win_rate/avg_loss-(1-win_rate)/avg_win, 0), 1)
self.Plot("Model", "Win Rate", win_rate)
self.Plot("Model", "Win Loss Ratio", avg_win/avg_loss)
self.Plot("Model", "Kelly Position", self.pos_size)
self.Debug(f"WR:{win_rate:.3f} PS:{self.pos_size:.3f} "
f"AW:{avg_win:.4f} AL:{avg_loss:.4f}")
def trade(self):
x = self.get_data(max(self.lookbacks) + 1, include_y=False)
if len(x) > 0 and self.model is not None:
symbols = x.index.get_level_values("symbol")
pred = pd.Series(self.model.predict(x), index=symbols).sort_values()
for symbol in pred.index:
self.Log(f"Signal for {symbol}: {pred[symbol]}")
if pred[symbol] == 1:
self.SetHoldings(symbol, self.pos_size/len(self.tickers))
else:
self.SetHoldings(symbol, 0)
def get_data(self, datapoints=1, include_y=True):
tickers = list(self.ActiveSecurities.Keys)
data = self.History(tickers, datapoints, self.resolution)
data["volatility"] = data["high"] - data["low"]
data["spread"] = data["askclose"] - data["bidclose"]
data = data[["close", "volatility", "volume", "spread"]]
groups = data.groupby("symbol")
features = [groups.pct_change(p) for p in self.lookbacks] # Momentum
features += [data / groups.apply(lambda x: x.rolling(p).mean())
for p in self.lookbacks] # Feats normalized by their average
features = pd.concat(features, join="inner", axis="columns").dropna()
if include_y:
target = groups["close"].pct_change(1).shift(-1)
target = target.reindex_like(features).dropna()
return features.loc[target.index], target
else:
return features