| Overall Statistics |
|
Total Orders 1451 Average Win 0.62% Average Loss -0.78% Compounding Annual Return -0.488% Drawdown 49.400% Expectancy 0.016 Start Equity 100000 End Equity 97108.19 Net Profit -2.892% Sharpe Ratio 0.022 Sortino Ratio 0.024 Probabilistic Sharpe Ratio 0.426% Loss Rate 43% Win Rate 57% Profit-Loss Ratio 0.79 Alpha -0.068 Beta 0.985 Annual Standard Deviation 0.247 Annual Variance 0.061 Information Ratio -0.381 Tracking Error 0.183 Treynor Ratio 0.006 Total Fees $2243.34 Estimated Strategy Capacity $85000.00 Lowest Capacity Asset CAG R735QTJ8XC9X Portfolio Turnover 6.65% |
from AlgorithmImports import *
class conservative_reblancing(AlphaModel):
def __init__(self, benchmark, v_lookback, m_lookback):
self.benchmark = benchmark
self.v_lookback = v_lookback
self.m_lookback = m_lookback
self.symbols = []
self.month = -1
def on_securities_changed(self, algorithm, changes):
for added in changes.added_securities:
self.symbols.append(added.symbol)
for removed in changes.removed_securities:
symbol = removed.symbol
if symbol in self.symbols:
self.symbols.remove(symbol)
def update(self, algorithm, data):
if algorithm.time.month == self.month: return []
self.month = algorithm.time.month
# Initialize the data
alphas = dict()
# Fetch indicator data
for symbol in self.symbols:
if symbol not in data.Keys:
algorithm.Debug(f"At {algorithm.Time}, {symbol} is not in the data feed")
continue
# Create the indicators
roc = algorithm.roc(symbol, 1, Resolution.Daily)
std = algorithm.std(symbol, self.v_lookback, Resolution.DAILY)
momp = algorithm.momp(symbol, self.m_lookback, Resolution.DAILY)
# Get historical data for warm-up
history = algorithm.History(symbol, max(self.v_lookback, self.m_lookback), Resolution.DAILY)
# Warm up the indicators
for idx, row in history.loc[symbol].iterrows():
roc.Update(idx, row["close"])
std.Update(idx, roc.current.value)
momp.Update(idx, row["close"])
# Compute the rank value
alphas[symbol] = momp.Current.Value / std.Current.Value
# Rank the symbol by the value of mom/vol
selected = sorted(alphas.items(), key=lambda x: x[1], reverse=True)[:5]
selected_symbols = [x[0] for x in selected]
return [
Insight.price(symbol, Expiry.END_OF_MONTH, InsightDirection.UP) for symbol in selected_symbols
]#region imports
from AlgorithmImports import *
from universe import *
from alpha import *
#endregion
class ConservativeApgorithm(QCAlgorithm):
def initialize(self):
self.set_start_date(2018, 1, 1)
self.set_end_date(2024, 1, 1)
self.set_cash(100000)
# self.set_warm_up(60)
# Set number days to trace back
v_lookback = self.get_parameter("v_lookback", 36)
m_lookback = self.get_parameter("m_lookback", 12)
self.set_warmup(40)
self.set_brokerage_model(BrokerageName.INTERACTIVE_BROKERS_BROKERAGE, AccountType.MARGIN)
# SPY 500 companies
spy = self.add_equity("SPY",
resolution = self.universe_settings.resolution,
data_normalization_mode = self.universe_settings.data_normalization_mode).symbol
self.set_benchmark(spy)
self.set_universe_selection(etf_constituents_universe(spy, self.universe_settings))
self.add_alpha(conservative_reblancing(spy, v_lookback, m_lookback))
self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel(Expiry.END_OF_MONTH))
self.set_risk_management(NullRiskManagementModel())
self.set_execution(ImmediateExecutionModel())
from AlgorithmImports import *
class etf_constituents_universe(ETFConstituentsUniverseSelectionModel):
def __init__(self, benchmark, universe_settings: UniverseSettings = None) -> None:
super().__init__(benchmark, universe_settings, self.etf_constituents_filter)
def etf_constituents_filter(self, constituents):
return [c.symbol for c in constituents]