| Overall Statistics |
|
Total Trades 46 Average Win 0.52% Average Loss -0.63% Compounding Annual Return 3.521% Drawdown 0.800% Expectancy 0.122 Net Profit 1.451% Sharpe Ratio 1.319 Probabilistic Sharpe Ratio 59.539% Loss Rate 39% Win Rate 61% Profit-Loss Ratio 0.84 Alpha 0.024 Beta 0.001 Annual Standard Deviation 0.019 Annual Variance 0 Information Ratio -2.221 Tracking Error 0.062 Treynor Ratio 30.831 Total Fees $46.00 Estimated Strategy Capacity $6800000.00 Lowest Capacity Asset V U12VRGLO8PR9 Portfolio Turnover 7.10% |
'''
12 PAIRS TRADING ALGORITHM XLF v05
Based on Pairs Trading with Stocks strategy by Jin Wu 2018
https://www.quantconnect.com/learning/articles/investment-strategy-library/pairs-trading-with-stocks
'''
#region imports
from AlgorithmImports import *
#endregion
# https://quantpedia.com/Screener/Details/12
import numpy as np
import pandas as pd
from scipy import stats
from math import floor
from datetime import timedelta
from collections import deque
import itertools as it
from decimal import Decimal
class PairsTradingAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2017,1,1)
self.SetEndDate(2017,6,1)
self.SetCash(10000)
tickers = ['COF','BRK.B', 'JPM', 'V', 'MA', 'BAC', 'WFC', 'SPGI', 'GS', 'MS',
'BLK', 'AXP', 'MMC', 'C', 'PYPL','CB', 'FISV', 'PGR', 'SCHW', 'CME',
'AON','ICE', 'MCO', 'PNC', 'AJG','TRV', 'USB', 'AFL','AIG', 'MSCI',
'MET', 'TFC']
#
#
# ]
self.threshold = 2
self.symbols = []
for i in tickers:
self.symbols.append(self.AddEquity(i, Resolution.Daily).Symbol)
self.pairs = {}
self.formation_period = int(self.GetParameter("days")) #252
self.history_price = {}
for symbol in self.symbols:
hist = self.History([symbol], self.formation_period+1, Resolution.Daily)
if hist.empty:
self.symbols.remove(symbol)
else:
self.history_price[str(symbol.ID)] = deque(maxlen=self.formation_period)
for tuple in hist.loc[str(symbol.ID)].itertuples():
self.history_price[str(symbol.ID)].append(float(tuple.close))
if len(self.history_price[str(symbol.ID)]) < self.formation_period:
self.symbols.remove(symbol)
self.history_price.pop(str(symbol.ID))
self.symbol_pairs = list(it.combinations(self.symbols, 2))
# Add the benchmark
self.AddEquity("SPY", Resolution.Daily)
self.Schedule.On(self.DateRules.MonthStart("SPY"), self.TimeRules.AfterMarketOpen("SPY"), self.Rebalance)
self.count = 0
self.sorted_pairs = None
def OnData(self, data):
# Update the price series everyday
self.Log("Hist: "+str(self.history_price))
for symbol in self.symbols:
if data.Bars.ContainsKey(symbol) and str(symbol.ID) in self.history_price:
self.history_price[str(symbol.ID)].append(float(data[symbol].Close))
if self.sorted_pairs is None: return
x=0
#self.Log("Len Sorted pairs: "+str(len(self.sorted_pairs)))
for i in self.sorted_pairs:
#self.Log("OnData Self.sorted x{}: {} {}".format(x,str(i[0]),str(i[1])))
# calculate the spread of two price series
spread = np.array(self.history_price[str(i[0].ID)]) - np.array(self.history_price[str(i[1].ID)])
mean = np.mean(spread)
std = np.std(spread)
ratio = self.Portfolio[i[0]].Price / self.Portfolio[i[1]].Price
#self.Log("pairs {}: {} {} {} {}".format(x,self.sorted_pairs[x][0], self.sorted_pairs[x][1],spread[-1] > mean + self.threshold*std,
#spread[-1] < mean - self.threshold*std))
# long-short position is opened when pair prices have diverged by two standard deviations
if spread[-1] > mean + self.threshold * std:
if not self.Portfolio[i[0]].Invested and not self.Portfolio[i[1]].Invested:
quantity = int(self.CalculateOrderQuantity(i[0], 0.2))
self.Log("Will buy {} and sell {}".format(self.sorted_pairs[x][1], self.sorted_pairs[x][0]))
self.Sell(i[0], quantity)
self.Buy(i[1], floor(ratio*quantity))
elif spread[-1] < mean - self.threshold * std:
self.Log("Entered 2nd if")
quantity = int(self.CalculateOrderQuantity(i[0], 0.2))
if not self.Portfolio[i[0]].Invested and not self.Portfolio[i[1]].Invested:
self.Log("Will buy {} and sell {}".format(self.sorted_pairs[x][0], self.sorted_pairs[x][1]))
self.Sell(i[1], quantity)
self.Buy(i[0], floor(ratio*quantity))
# the position is closed when prices revert back
elif self.Portfolio[i[0]].Invested and self.Portfolio[i[1]].Invested:
self.Log("Liquidating: {} {}".format(self.sorted_pairs[x][0], self.sorted_pairs[x][1]))
self.Liquidate(i[0])
self.Liquidate(i[1])
x=x+1
def Rebalance(self):
# schedule the event to fire every half year to select pairs with the smallest historical distance
if self.count % 3 == 0:
self.Log("Symbols: ")
distances = {}
y = 0
for i in self.symbol_pairs:
self.Debug("Pair {}: {} {}".format(y,str(i[0].ID), str(i[1].ID)))
#self.Debug("History {}: {} {}".format(y,self.history_price[str(i[0])], self.history_price[str(i[1])]))
if self.history_price[str(i[0].ID)] and self.history_price[str(i[1].ID)]:
distances[i] = Pair(i[0], i[1], self.history_price[str(i[0].ID)], self.history_price[str(i[1].ID)]).distance()
self.sorted_pairs = sorted(distances, key = lambda x: distances[x])[:4]
else:
self.Debug("Empty history")
y = y+1
for x in self.sorted_pairs:
self.Log("Self.sorted: {} {}".format(str(x[0].ID),str(x[1].ID)))
self.count += 1
class Pair:
def __init__(self, symbol_a, symbol_b, price_a, price_b):
self.symbol_a = symbol_a
self.symbol_b = symbol_b
self.price_a = price_a
self.price_b = price_b
def distance(self):
# calculate the sum of squared deviations between two normalized price series
norm_a = np.array(self.price_a)/self.price_a[0]
norm_b = np.array(self.price_b)/self.price_b[0]
return sum((norm_a - norm_b)**2)