| Overall Statistics |
|
Total Trades 113 Average Win 11.04% Average Loss -1.09% Compounding Annual Return 40.437% Drawdown 23.000% Expectancy 7.772 Net Profit 8196.284% Sharpe Ratio 1.67 Probabilistic Sharpe Ratio 96.012% Loss Rate 21% Win Rate 79% Profit-Loss Ratio 10.16 Alpha 0.334 Beta 0.188 Annual Standard Deviation 0.211 Annual Variance 0.044 Information Ratio 0.987 Tracking Error 0.257 Treynor Ratio 1.876 Total Fees $7526.95 |
# Intersection of ROC comparison using OUT_DAY approach by Vladimirhttps://www.quantconnect.com/terminal/#backtest-floating-panel
import numpy as np
# ------------------------------------------------------------------------------
STOCKS = ['QQQ']; BONDS = ['TLT', 'TLH']; VOLA = 126; BASE_RET = 85; LEV = 1.50;
PAIRS = ['SLV', 'GLD', 'XLI', 'XLU', 'DBB', 'UUP']
# ------------------------------------------------------------------------------
class InOut(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2008, 1, 1)
# self.SetEndDate(2020, 12, 17)
self.cap = 100000
self.SetCash(self.cap)
self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin)
#self.Portfolio.MarginCallModel = MarginCallModel.Null
self.STOCKS = [self.AddEquity(ticker, Resolution.Minute).Symbol for ticker in STOCKS]
self.BONDS = [self.AddEquity(ticker, Resolution.Minute).Symbol for ticker in BONDS]
#self.Securities["QQQ"].SetLeverage(2.0)
#self.Securities["TLT"].SetLeverage(2.0)
#self.Securities["TLH"].SetLeverage(2.0)
self.Securities["QQQ"].MarginModel = PatternDayTradingMarginModel()
self.Securities["TLT"].MarginModel = PatternDayTradingMarginModel()
self.Securities["TLH"].MarginModel = PatternDayTradingMarginModel()
self.SLV = self.AddEquity('SLV', Resolution.Daily).Symbol
self.GLD = self.AddEquity('GLD', Resolution.Daily).Symbol
self.XLI = self.AddEquity('XLI', Resolution.Daily).Symbol
self.XLU = self.AddEquity('XLU', Resolution.Daily).Symbol
self.DBB = self.AddEquity('DBB', Resolution.Daily).Symbol
self.UUP = self.AddEquity('UUP', Resolution.Daily).Symbol
self.MKT = self.AddEquity('SPY', Resolution.Daily).Symbol
self.pairs = [self.SLV, self.GLD, self.XLI, self.XLU, self.DBB, self.UUP]
self.bull = 1
self.count = 0
self.outday = 0
self.wt = {}
self.real_wt = {}
self.mkt = []
#self.SetWarmUp(timedelta(350))
self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('SPY', 120),
self.rebalance)
symbols = [self.MKT] + self.pairs
for symbol in symbols:
self.consolidator = TradeBarConsolidator(timedelta(days=1))
self.consolidator.DataConsolidated += self.consolidation_handler
self.SubscriptionManager.AddConsolidator(symbol, self.consolidator)
self.history = self.History(symbols, VOLA + 1, Resolution.Daily)
if self.history.empty or 'close' not in self.history.columns:
return
self.history = self.history['close'].unstack(level=0).dropna()
def consolidation_handler(self, sender, consolidated):
self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close
self.history = self.history.iloc[-(VOLA + 1):]
def rebalance(self):
vola = self.history[[self.MKT]].pct_change().std() * np.sqrt(252)
wait_days = int(vola * BASE_RET)
period = int((1.0 - vola) * BASE_RET)
r = self.history.pct_change(period).iloc[-1]
exit = ((r[self.SLV] < r[self.GLD]) and (r[self.XLI] < r[self.XLU]) and (r[self.DBB] < r[self.UUP]))
if exit:
self.bull = False
self.outday = self.count
if self.count >= self.outday + wait_days:
self.bull = True
self.count += 1
if not self.bull:
for sec in self.STOCKS: self.wt[sec] = 0.0
for sec in self.BONDS: self.wt[sec] = LEV/len(self.BONDS)
self.trade()
elif self.bull:
for sec in self.STOCKS: self.wt[sec] = LEV/len(self.STOCKS)
for sec in self.BONDS: self.wt[sec] = 0.0
self.trade()
def trade(self):
for sec, weight in self.wt.items():
if weight == 0 and self.Portfolio[sec].IsLong:
self.Liquidate(sec)
cond1 = weight == 0 and self.Portfolio[sec].IsLong
cond2 = weight > 0 and not self.Portfolio[sec].Invested
if cond1 or cond2:
self.SetHoldings(sec, weight)
def OnEndOfDay(self):
mkt_price = self.Securities[self.MKT].Close
self.mkt.append(mkt_price)
mkt_perf = self.mkt[-1] / self.mkt[0] * self.cap
self.Plot('Strategy Equity', 'SPY', mkt_perf)
account_leverage = self.Portfolio.TotalHoldingsValue / self.Portfolio.TotalPortfolioValue
self.Plot('Holdings', 'leverage', round(account_leverage, 2))from QuantConnect.Data.Custom.USEnergy import *
class USEnergyAlphaModel:
def __init__(self, algorithm):
self.energy = algorithm.AddData(USEnergy, USEnergy.Petroleum.UnitedStates.WeeklyGrossInputsIntoRefineries).Symbol
def Update(self, algorithm, data):
insights = []
if not data.ContainsKey(self.energy):
return insights
energy_data = data.Get(USEnergy, self.energy)
## The U.S. Energy Information Administration (EIA) is a principal agency of the U.S. Federal Statistical System
## responsible for collecting, analyzing, and disseminating energy information to promote sound policymaking,
## efficient markets, and public understanding of energy and its interaction with the economy and the environment.
## EIA programs cover data on coal, petroleum, natural gas, electric, renewable and nuclear energy. EIA is part of the U.S. Department of Energy.
## Find more categories here: https://github.com/QuantConnect/Lean/blob/master/Common/Data/Custom/USEnergy/USEnergy.Category.cs
return insights
def OnSecuritiesChanged(self, algorithm, changes):
# For instruction on how to use this method, please visit
# https://www.quantconnect.com/docs/algorithm-framework/alpha-creation#Alpha-Creation-Good-Design-Patterns
pass