| Overall Statistics |
|
Total Trades 1 Average Win 0% Average Loss 0% Compounding Annual Return -6.313% Drawdown 13.100% Expectancy 0 Net Profit -5.823% Sharpe Ratio -0.631 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha -0.135 Beta 5.334 Annual Standard Deviation 0.078 Annual Variance 0.006 Information Ratio -0.836 Tracking Error 0.078 Treynor Ratio -0.009 Total Fees $0.00 |
# https://quantpedia.com/Screener/Details/100
from QuantConnect.Data import SubscriptionDataSource
from QuantConnect.Python import PythonData
from datetime import date, timedelta, datetime
from decimal import Decimal
import numpy as np
from sklearn import datasets, linear_model
from QuantConnect.Python import PythonQuandl
class TradeSpreadAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2018, 1, 1)
self.SetEndDate(2018, 12, 1)
self.SetCash(100000)
# import the custom data
self.Forex = self.AddForex("AUDUSD", Resolution.Daily, Market.Oanda)
self.Forex = self.AddForex("USDSGD", Resolution.Daily, Market.Oanda)
#self.Data = self.AddData(Quandl, "BCIW/_DXY", Resolution.Daily)
#self.dxy_sma = SimpleMovingAverage(25)
# initialize the indicator with the history request
#dxy_smaHistory = self.History("BCIW/_DXY", 25*10, Resolution.Daily)
#audsgdHistory = self.History(("AUDUSD", "USDSGD"), 25*10, Resolution.Daily)
'''for tuple in dxy_smaHistory.loc["BCIW/_DXY"].itertuples():
self.dxy_sma.Update(tuple.Index, tuple.value)'''
self.audsgd_sma = SimpleMovingAverage(25)
prices = self.History(["AUDUSD", "USDSGD"], 200, Resolution.Daily)
self.Debug(str(prices))
self.Debug(str(self.audsgd_sma.Current.Value))
self.Debug(str(self.History))
def OnData(self, data):
if not self.Portfolio.Invested:
self.SetHoldings("AUDUSD", 1)
'''
prices = whathist.close.unstack(level=0).dropna()
hist_20days = hist[-20:]
price = (hist_20days["AUDUSD"] - hist_20days["USDSGD"]).dropna()
for index, value in price.items():
self.audsgd_sma.Update(index, value)
# create the SMA of 2 correlated pairs = aud price - sgd price
self.SpreadSMA = SimpleMovingAverage(20)
hist = self.History(["AUDUSD", "USDSGD"], 400, Resolution.Daily)["value"].unstack(level=0).dropna()
hist_20days = hist[-20:]
price = (hist_20days["AUDUSD"] - hist_20days["USDSGD"]).dropna()
for index, value in price.items():
self.priceSMA.Update(index, value)
# Add the spread plot and mark the long/short spread point
spreadPlot = Chart("Spread Plot")
spreadPlot.AddSeries(Series("Spread", SeriesType.Line, 0))
spreadPlot.AddSeries(Series("Long Spread Trade", SeriesType.Scatter, 0))
spreadPlot.AddSeries(Series("Short Spread Trade", SeriesType.Scatter, 0))
self.AddChart(spreadPlot)'''
'''
def OnData(self, data):
if not (data.ContainsKey("WTI") and data.ContainsKey("BRENT")): return
self.Plot("Spread Plot", "Spread", data["WTI"].Price - data["BRENT"].Price)
self.SpreadSMA.Update(self.Time, data["WTI"].Price - data["BRENT"].Price)
if not self.SpreadSMA.IsReady: return
spread = self.Securities["WTI"].Price - self.Securities["BRENT"].Price
fair_value =self.Securities["WTI"].Price - Decimal(self.regr.predict(self.Securities["WTI"].Price)[0])
if spread > self.SpreadSMA.Current.Value and not (self.Portfolio["WTI"].IsShort and self.Portfolio["BRENT"].IsLong):
self.SetHoldings("WTI", -0.5)
self.SetHoldings("BRENT", 0.5)
self.Plot("Spread Plot", "Long Spread Trade", data["WTI"].Price - data["BRENT"].Price)
elif spread < self.SpreadSMA.Current.Value and not (self.Portfolio["WTI"].IsLong and self.Portfolio["BRENT"].IsShort):
self.SetHoldings("WTI", 0.5)
self.SetHoldings("BRENT", -0.5)
self.Plot("Spread Plot", "Short Spread Trade", data["WTI"].Price - data["BRENT"].Price)
if self.Portfolio["WTI"].IsShort and self.Portfolio["BRENT"].IsLong and spread < fair_value:
self.Liquidate()
if self.Portfolio["WTI"].IsLong and self.Portfolio["BRENT"].IsShort and spread > fair_value:
self.Liquidate() '''
'''
class WTI(PythonData):
"Class to import WTI Spot Price(Dollars per Barrel) data from Dropbox"
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("https://www.dropbox.com/s/jpie3z6j0stp97d/wti-crude-oil-prices-10-year-daily.csv?dl=1", SubscriptionTransportMedium.RemoteFile)
def Reader(self, config, line, date, isLiveMode):
if not (line.strip() and line[1].isdigit()): return None
index = WTI()
index.Symbol = config.Symbol
try:
# Example File Format: (Data starts from 08/11/2008)
# date value
# 8/11/08 114.44
data = line.split(',')
index.Time = datetime.strptime(data[0], "%Y-%m-%d")
index.Value = Decimal(data[1])
except:
return None
return index'''