| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.848 Tracking Error 0.223 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
# TaLib DEMA
from AlgorithmImports import *
# https://www.quantconnect.com/project/9660424
import numpy as np
import talib
STOCK = 'SPY'; PERIOD = 50;
class TaLibDEMA(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2020, 1, 31)
self.SetEndDate(2021, 10, 20)
self.SetWarmUp(5*PERIOD, Resolution.Daily)
self.stock = self.AddEquity(STOCK, Resolution.Daily).Symbol
self.rollingWindow = RollingWindow[TradeBar](5*PERIOD)
self.Consolidate(self.stock, Resolution.Daily, self.CustomBarHandler)
def CustomBarHandler(self, bar):
self.rollingWindow.Add(bar)
if self.IsWarmingUp: return
if not self.rollingWindow.IsReady: return
highs = np.flipud(np.array([self.rollingWindow[i].High for i in range(5*PERIOD)]))
lows = np.flipud(np.array([self.rollingWindow[i].Low for i in range(5*PERIOD)]))
closes = np.flipud(np.array([self.rollingWindow[i].Close for i in range(5*PERIOD)]))
talib_midprice = float(talib.MIDPRICE(highs,lows,2)[-1])
talib_dema = float(talib.DEMA(closes, PERIOD)[-1])
self.Plot("Indicator", "talib_midprice", talib_midprice)
self.Plot("Indicator", "talib_dema", talib_dema)