| Overall Statistics |
|
Total Trades 414 Average Win 0.16% Average Loss -0.08% Compounding Annual Return 14.447% Drawdown 3.200% Expectancy 0.918 Net Profit 15.754% Sharpe Ratio 1.577 Probabilistic Sharpe Ratio 74.935% Loss Rate 37% Win Rate 63% Profit-Loss Ratio 2.02 Alpha -0.012 Beta 0.455 Annual Standard Deviation 0.063 Annual Variance 0.004 Information Ratio -2.057 Tracking Error 0.071 Treynor Ratio 0.22 Total Fees $414.80 Estimated Strategy Capacity $360000000.00 Lowest Capacity Asset QQQ RIWIV7K5Z9LX |
from sklearn.model_selection import train_test_split
from optimize import *
import numpy as np
import pandas as pd
class EnsembleModel():
def __init__(self, algo):
self.algo = algo
self.models = None
self.optimizer = None
# Build a set of models
def Train(self, X, y):
self.optimizer = ModelOptimizer(self.algo)
self.models = self.optimizer.BuildModels(X, y)
# Return prediction as a +/- Z-Score of the prediction from the the threshold
def Predict(self, X):
total_weight = sum(model.test_score for model in self.models)
z = 0
for model in self.models:
result = model.Predict(X)
# Weight the result based on the models test score
z = z + result * (model.test_score/total_weight)
return zimport talib
from talib import func
import numpy as np
import pandas as pd
#
# This helper class allows us to easily add features to our dataset
# add_features(df, ['EMA_7'])
#
# Other examples
# EMA_7_28 gives you the ratio of these two EMA
# EMA_7_28_diff gives you the difference of the current ratio and the last ratio for those two EMA
#
def ichimoku_a(high, low, n1 = 9, n2 = 26, n3 = 52):
conv = 0.5 * (high.rolling(n1, min_periods=0).max()
+ low.rolling(n1, min_periods=0).min())
base = 0.5 * (high.rolling(n2, min_periods=0).max()
+ low.rolling(n2, min_periods=0).min())
spana = 0.5 * (conv + base)
return pd.Series(spana)
def ichimoku_b(high, low, n1 = 9, n2 = 26, n3 = 52):
spanb = 0.5 * (high.rolling(n3, min_periods=0).max()
+ low.rolling(n3, min_periods=0).min())
return pd.Series(spanb)
def obv_rolling_percent(close, volume, n, fillna=False):
df = pd.DataFrame([close, volume]).transpose()
df['OBV'] = 0
c1 = close < close.shift(1)
c2 = close > close.shift(1)
if c1.any():
df.loc[c1, 'OBV'] = - volume
if c2.any():
df.loc[c2, 'OBV'] = volume
obv = df['OBV'].rolling(n).sum() / df[volume.name].rolling(n).sum()
if fillna:
obv = obv.replace([np.inf, -np.inf], np.nan).fillna(0)
return pd.Series(obv, name='obv')
def kst(close, r1 = 3, r2 = 7, r3 = 14, r4 = 28, n1 = 10, n2 = 3, n3 = 7, n4 = 14):
rocma1 = ((close - close.shift(r1))
/ close.shift(r1)).rolling(n1, min_periods=0).mean()
rocma2 = ((close - close.shift(r2))
/ close.shift(r2)).rolling(n2, min_periods=0).mean()
rocma3 = ((close - close.shift(r3))
/ close.shift(r3)).rolling(n3, min_periods=0).mean()
rocma4 = ((close - close.shift(r4))
/ close.shift(r4)).rolling(n4, min_periods=0).mean()
return 100 * (rocma1 + 2 * rocma2 + 3 * rocma3 + 4 * rocma4)
def kst_sig(close, r1 = 3, r2 = 7, r3 = 14, r4 = 28, n1 = 10, n2 = 3, n3 = 7, n4 = 14, nsig = 6):
kst_val = kst(clse, r1, r2, r3, r4, n1, n2, n3, n4)
kstsig = kst_val.rolling(nsig, minperiods=0).mean()
return kstsig
def check_feature_cache(cache, name, f, args):
if not name in cache:
cache[name] = f(*args)
return cache[name]
def add_features(df, features, close="close", high="high", low="low", volume="volume"):
fmap = {'MFI':'money_flow_index','ICHA':'ichimoku_a','ICHB':'ichimoku_b','BOLLH':'bollinger_hband', \
'BOLLL':'bollinger_lband','KCC':'keltner_channel_central','NVI':'negative_volume_index', \
'OBVP' : 'obv_rolling_percent', 'KST' : 'kst', 'KST_SIG' : 'kst_sig'}
cache = {}
for feature in features:
# parse string. Style is func_period1_period2:COL=ColumnName1 (column name optional)
col = None
col_idx = feature.find(':')
if col_idx > -1:
col = feature[col_idx+1:]
feature = feature[0:col_idx]
p = feature.split('_')
if not col is None:
feature = feature + "_" + col
fname = p[0].upper()
# If DM, DI, or HT function will have underscore in name, need to add suffix back and shift params back
if len(p) > 1 and (p[1] in ['DM','DI'] or p[0] in ['HT']):
fname += '_' + p[1]
for i in range(2,len(p)):
p[i-1] = p[i]
del p[-1]
p1 = p[1].upper() if len(p) > 1 else None
p2 = p[2].upper() if len(p) > 2 else None
p3 = p[3].upper() if len(p) > 3 else None
if fname in fmap:
if fmap[fname].find('.') > -1:
s = fmap[fname].split('.')
cls = s[0]
f = getattr(globals()[cls], s[1])
else:
f = globals()[fmap[fname].lower()]
elif fname in talib.__TA_FUNCTION_NAMES__:
f = getattr(func, fname)
elif fname.lower() in globals():
f = globals()[fname.lower()]
else:
raise Exception(f'Could not find function. fname: {fname} feature: {feature}')
if fname.endswith('MA') or fname == 'T3':
args = [df[close], int(p1)]
if p2 is None:
df[feature] = (check_feature_cache(cache, feature, f, args ))
elif p2 == 'DIFF':
ma1 = check_feature_cache(cache, fname + '_' + p1, f, args)
df[feature] = ma1.pct_change()
p2 = None # So it doesn't get diffed at end of method
else:
ma1 = check_feature_cache(cache, fname + '_' + p1, f, args)
args = [df[close], int(p2)]
ma2 = check_feature_cache(cache, fname + '_' + p2, f, args)
df[feature] = (ma1 - ma2) / ma1
df[feature].replace([np.inf, -np.inf], 0, inplace=True)
elif fname in ['CMO','TRIX','ROCP','ROCR100','ROC','BOLLH','BOLLL', 'RSI','MOM']:
df[feature] = f(df[close], int(p1))
elif fname in ['MINUS_DM', 'PLUS_DM']:
df[feature] = f(df[high], df[low], int(p1))
elif fname in ['ADX','ATR','KCC','MINUS_DI','PLUS_DI','WILLR']:
try:
if df[close].isnull().all():
df[feature] = np.nan
elif p2 is None or p2.upper() == 'DIFF':
df[feature] = f(df[high], df[low], df[close], int(p1))
# Change all to percent, except WILLR
if not fname in ['WILLR','ADX']:
df[feature] = df[feature]/df[close]
else:
#params = {'close' : df[close], 'high' : df[high],'low' : df[low], 'timeperiod' : int(p1)}
args = [df[high], df[low], df[close], int(p1)]
f1 = check_feature_cache(cache, fname + '_' + p1, f, args)
args = [df[high], df[low], df[close], int(p2)]
f2 = check_feature_cache(cache, fname + '_' + p2, f, args)
df[feature] = (f1-f2)/f1
df[feature].replace([np.inf, -np.inf], 0, inplace=True)
except Exception as ex:
if str(ex) == 'inputs are all NaN':
df[feature] = np.nan
else:
raise
elif fname in ['MFI']:
df[feature] = f(df[high], df[low], df[close], df[volume], int(p1))
elif fname in ['MACD', 'PPO', 'TSI']:
df[feature] = f(df[close], int(p1), int(p2))
elif fname in ['ICHA', 'ICHB', 'AO']:
# Normalize
df[feature] = f(df[high], df[low], int(p1), int(p2))
# if fname.startswith('ICH'):
# df[feature] = df[feature]/ df[close]
elif fname in ['NVI']:
df[feature] = f(df[close], df[volume])
elif fname in ['SAR', 'SAREXT']:
# Normalize
df[feature] = f(df[high], df[low]) #/ df[close]
elif fname == 'KST':
df[feature] = f(df[close], r1=10, r2=15, r3=20, r4=30, n1=10, n2=10, n3=10, n4=15)
elif fname == 'KST_SIG':
df[feature] = f(df[close], r1=10, r2=15, r3=20, r4=30, n1=10, n2=10, n3=10, n4=15, nsig=9)
elif fname == 'AROON':
df[feature] = f(df[high], df[low], int(p1))[int(p2)-1]
elif fname == 'ULTOSC':
df[feature] = f(df[high], df[low], df[close])
elif fname in ['OBVP']:
df[feature] = f(df[close],df[volume],int(p1))
elif fname in ['OBTP']:
df[feature] = f(df[close],df["Trades"],int(p1))
elif fname in ['HT_DCPERIOD','HT_DCPHASE','HT_PHASOR','HT_SINE', 'HT_TRENDMODE','STOCHRSI' ]:
df[feature] = f(df[close])
else:
raise Exception('Feature not found: ' + feature + ' ' + fname )
# Difference those that are 1 period diffs
if p3 == 'DIFF' or p2 == 'DIFF':
df[feature] = df[feature].diff()
return df
def get_exhaustive_ma_features_list():
features = []
periods = [7, 14, 28, 42, 70]
mas = ["SMA", "DEMA", "KAMA", "EMA", "TEMA", "T3", "TRIMA", "WMA"]
for p in periods:
for ma in mas:
features.append(ma + "_" + str(p))
for p1 in periods:
for p2 in periods:
if p2 <= p1:
continue
for ma in mas:
ma1 = ma + str(p1)
ma2 = ma + str(p2)
features.append(ma + "_" + str(p1) + "_" + str(p2))
features.append(features[-1] + "_diff")
return features
def get_exhaustive_features_list(diffs=True):
features = get_exhaustive_ma_features_list()
periods = [3,7,14,20,30]
band_periods = [7,14,21,28]
hi_lo_periods = [[4,9],[7,14],[10,21],[12,26]]
pfs = ['CMO','MINUS_DI','MINUS_DM','PLUS_DI','PLUS_DM','ROCP','ATR','ADX',
'TRIX','WILLR']
# Left out: MOM, VIN, VIP, ROC,ROCR,OBVM,EOM,DPI,RSI,STOCH,STOCH_SIG,FI
for p in periods:
features.append('AROON_' + str(p) + '_1')
features.append('AROON_' + str(p) + '_2')
for pf in pfs:
if pf == 'ADX' and p == 3:
continue
features.append(pf + '_' + str(p))
if diffs:
features.append(features[-1] + "_diff")
if diffs:
for p1 in periods:
for p2 in periods:
if p2 <= p1:
continue
for pf in pfs:
pf1 = pf + str(p1)
pf2 = pf + str(p2)
features.append(pf + "_" + str(p1) + "_" + str(p2))
features.append(features[-1] + "_diff")
hlfs = ['ICHA','ICHB']
# Exclude PPO, same as our MA setups
# hi lo Indicators
for hl in hi_lo_periods:
for hlf in hlfs:
features.append(hlf + '_' + str(hl[0]) + '_' + str(hl[1]))
# other indicators
otfs = ['SAR','SAREXT','HT_DCPERIOD','ULTOSC','OBVP_10','OBVP_20','OBVP_40','OBVP_80']
for otf in otfs:
features.append(otf)
return featuresfrom AlgorithmImports import *
from feature import add_features
from ensemble import EnsembleModel
from datetime import timedelta
import pandas as pd
class TransdimensionalDynamicThrustAssembly(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2020, 11, 1) # Set Start Date
self.SetEndDate(2021, 12, 1) # Set Start Date
self.SetCash(100000) # Set Strategy Cash
self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage)
self.UniverseSettings.Resolution = Resolution.Hour
self.SetWarmup(timedelta(days=15))
self.SetBenchmark('SPY')
# Manual selection of ETFs
# self.symbols = ["SPY","DIA","IJR","MDY","IWM","QQQ","IYE","EEM","IYW","EFA","SLV","IEF","IYM","IYF","IYH","IYR","IYC","IBB","FEZ","USO","TLT"]
self.symbols = ["SPY", "QQQ"]
for symbol in self.symbols:
self.AddEquity(symbol, Resolution.Minute)
# Manually curated universe
self.SetUniverseSelection(ManualUniverseSelectionModel())
# Select the demonstration alpha model
alpha = WeightedClassifierAlpha(self, self.symbols)
self.SetAlpha(alpha)
# Equally weigh securities in portfolio, based on insights
self.SetPortfolioConstruction(InsightWeightingPortfolioConstructionModel())
# Set Immediate Execution Model
self.SetExecution(ImmediateExecutionModel())
# Set Null Risk Management Model
self.SetRiskManagement(NullRiskManagementModel())
class WeightedClassifierAlpha(AlphaModel):
def __init__(self, algo, symbols):
self.algo = algo
self.symbols = symbols
self.models = None
self.month_count = 0
# Train models monthly
algo.Schedule.On(algo.DateRules.MonthStart(),
algo.TimeRules.At(1, 0),
self.Train)
# Rebalance weekly
algo.Schedule.On(algo.DateRules.EveryDay('SPY'),
algo.TimeRules.At(2, 0),
self.Rebalance)
self.days_count = 5
def Update(self, algo, data):
return []
# Predict values and create insights
def Rebalance(self):
insights = []
if self.algo.IsWarmingUp:
return insights
if self.models is None:
self.BuildModels()
try:
# Load History and Features
end = self.algo.Time + timedelta(days=1)
start = end - timedelta(days=450)
history = self.GetHistoryAndFeatures(start, end)
# Drop our Y columns before training
idx = pd.IndexSlice
X = history.drop(columns=['returns_1d', 'returns_1w', 'close','high','low','open','volume'])
columns = X.columns[X.isna().any()].tolist()
X = X.dropna()
# Get last row of data
time = X.index[-1][0]
X = X.loc[idx[time, :], :]
# Predict each symbols direction
insights = []
for symbol in self.symbols:
symbol = SymbolCache.GetSymbol(symbol)
idx = pd.IndexSlice
X_symbol = X.loc[idx[:, [symbol.ID.ToString()]], :]
model = self.models[symbol]
result = model.Predict(X_symbol)
band = 0
direction = InsightDirection.Flat
if result >= 0:
insights.append(
Insight.Price(symbol, timedelta(days=4), InsightDirection.Up, 1, None, None, result))
elif result < 0:
# Notice the '-' before result. Weight must be positive for this to work correctly
insights.append(
Insight.Price(symbol, timedelta(days=4), InsightDirection.Flat, 1, None, None, -result))
self.algo.EmitInsights(insights)
except Exception as e:
self.Log('Unexpected error:' + str(e))
raise
def Train(self):
# To speed up backtest we just trained every 3 months
self.month_count += 1
if self.month_count == 3:
self.month_count = 0
self.BuildModels()
# self.BuildModels()
def BuildModels(self):
try:
self.models = {}
# Load History and Features
total_days = 365 * 4
start = self.algo.Time - timedelta(days=total_days)
end = self.algo.Time # + timedelta(days=1)
history = self.GetHistoryAndFeatures(start, end)
# Set our Y to predict if symbols will be positive in 1 week
history = history.dropna()
y = history['returns_1w'] > 0
# Drop Y and close
X = history.drop(columns=['returns_1d', 'returns_1w', 'close','high','low','open','volume'])
# Loop through symbols and build models for each
for symbol in self.symbols:
symbol = SymbolCache.GetSymbol(symbol)
idx = pd.IndexSlice
X_symbol = X.loc[idx[:, [symbol.ID.ToString()]], :]
y_symbol = y.loc[X_symbol.index]
model = EnsembleModel(self.algo)
model.Train(X_symbol, y_symbol)
self.models[symbol] = model
except Exception as e:
self.algo.Debug('Unexpected error:' + str(e))
raise
def GetHistoryAndFeatures(self, start, end):
history = self.algo.History(self.symbols, start, end, Resolution.Daily)
gb = history.groupby('symbol', group_keys=False)
history['returns_1w'] = -gb.close.pct_change(-5)
history['returns_1d'] = -gb.close.pct_change(-1)
# Commented out a variety of different Y variables I tested
# rgb = history.returns_1d.groupby('symbol', group_keys=False)
# history['return_std'] = rgb.transform(lambda x: x.rolling(window=14).std())
# history['return_std'] = rgb.transform(lambda x: x.rolling(window=200).std())
# history['return_mean'] = rgb.transform(lambda x: x.rolling(window=200).mean())
# history['return_last'] = gb.close.pct_change()
# history['return_zscore'] = history.return_last/history.return_std;
# history['zscore'] = (history.returns_1m-history.return_mean)/history.return_std
# history['return_gap'] = gb.apply(lambda x: (x.shift(-1).open-x.close)/x.close)
features = ['KAMA_50_200', 'KAMA_28_100', 'KAMA_7_25', 'KAMA_14_50',
'KAMA_50_200_diff', 'KAMA_14_50_diff', 'KAMA_28_100_diff', 'KAMA_7_25_diff']
#features = ['HT_DCPERIOD', 'HT_DCPHASE', 'MOM_5', 'ADX_10_diff','MOM_5_diff']
# Commented out a larger feature set. Left as an example of what can be used.
# features = ['ATR_7', 'ATR_21', 'ATR_3_7', 'ATR_3_7_diff', 'HT_DCPERIOD', 'HT_DCPHASE','ADX_7','ADX_14','ADX_20','ADX_30','ADX_50','ADX_60',
# 'ADX_7_diff','ADX_14_diff','ADX_20_diff','ADX_30_diff','ADX_50_diff','ADX_60_diff','KAMA_50','KAMA_200',
# 'KAMA_50_200','EMA_50_200','KAMA_28_100','KAMA_7_25','KAMA_14_50','EMA_14_50',
# 'KAMA_50_200_diff','EMA_50_200_diff','KAMA_14_50_diff','EMA_14_50_diff','KAMA_28_100_diff','KAMA_7_25_diff',
# 'EMA_7_28','EMA_7_28_diff', ]
gb = history.groupby('symbol', group_keys=False)
history = gb.apply(lambda x: add_features(x, features))
# Commented out some advanced features applying HT_DCPERIOD to other features
# gb = history.groupby('symbol', group_keys=False)
# history['HT_DCPERIOD_KAMA_50_200'] = gb.apply(lambda x: add_features(x, ['HT_DCPERIOD'], close='KAMA_50_200'))['HT_DCPERIOD']
# history['HT_DCPERIOD_KAMA_14_50'] = gb.apply(lambda x: add_features(x, ['HT_DCPERIOD'], close='KAMA_14_50'))['HT_DCPERIOD']
# Convert datetime to date
#history['datetime'] = history.index.get_level_values('time')
history = history.reset_index().set_index('time').sort_index()
history.index = history.index.normalize()
history = history.set_index('symbol', append=True)
return history
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd
class ClassifierModel():
def __init__(self, algo):
self.algo = algo
self.model = None
self.params = None
self.test_score = None
self.test_dist = None
self.threshold = None
# Train the model
def Train(self, X, y, params):
self.params = params
self.params['class_weight'] = self.GetClassWeight(y)
self.model = ExtraTreesClassifier(**self.params)
self.model.fit(X, y)
self.test_dist = self.model.predict_proba(X)[:, 1]
# Return prediction as a +/- Z-Score of the prediction from the the threshold
def Predict(self, X):
#self.algo.Debug(f'Number of columns before pca: {X.shape[1]}')
idx = X.index
#X = np.nan_to_num(X, nan=0, posinf=0, neginf=0)
probs = pd.Series(self.model.predict_proba(X)[:, 1])
d = self.test_dist
return (probs[0] - self.threshold) / d.std()
def GetClassWeight(self, y_train):
pos = y_train.sum()/(len(y_train))
neg = 1 - pos
pw = neg/pos
nw = pos/neg
return {0:nw,1:pw}from sklearn.ensemble import ExtraTreesClassifier
from scipy.stats.mstats import gmean
import numpy as np
import pandas as pd
import math
from sklearn.metrics import auc,roc_curve,precision_recall_curve, roc_auc_score, accuracy_score
from model import ClassifierModel
class ModelOptimizer():
def __init__(self, algo):
self.algo = algo
self.validation_score = 0
self.test_score = 0
self.test_dist = None
self.threshold = None
def BuildModels(self, X, y):
# Need to continue to play with min samples split and estimators and maybe class weights
params = {'random_state':0,'n_estimators': 10, 'min_samples_split': 200,
'class_weight' : {0:1,1:1},
'max_features': 'auto', 'max_depth': 3, 'criterion': 'gini', 'bootstrap': True}
# Train and validate using walk forward validation
max_score = -1
max_y = None
max_probs = None
num_iter = 10
num_test_records = 60
num_records = len(X)
num_train_records = num_records - num_test_records
batch_size = 4
models = []
results = []
# Iterate ove the dataset and create a number (num_iter) of models.
for i in range(0, num_iter):
probs = []
y_test_all = []
end_idx = num_records
# This is important. Copy params so each model keeps a distinct copy with it's own random seed
model_params = params.copy()
model_params['random_state']= i
# Loop through and do walk forward validation
j = num_train_records
while j < end_idx:
# Add the next segment of data
idx = j + batch_size
if idx >= end_idx:
idx = end_idx-1
X_train, X_test = X[0:j], X[j:idx]
y_train, y_test = y[0:j], y[j:idx]
j = j + batch_size
# Set the class weight based positives vs negatives
model_params['class_weight'] = self.get_class_weights(y_train)
# Train the model
clf = ExtraTreesClassifier(**model_params)
clf.fit(X_train, y_train)
# Predict using the model
p = pd.Series(clf.predict_proba(X_test)[:, 1])
# Add the predicions
probs.extend(p)
y_test_all.extend(y_test)
#precisions, recalls, thresholds = precision_recall_curve(y_test_all, probs)
#score = auc(recalls, precisions)
# Build model on all the data
model = ClassifierModel(self.algo)
model.Train(X, y, model_params)
# Since each models predictive results tend to skew, we calculate a threshold for what is a positive result
model.threshold = self.get_threshold(pd.Series(y), model.test_dist)
# Give the model a score for use in weighting models
score = self.score_results(y_test_all, probs, model.threshold)
#score = self.weighted_score(y_test_all, probs)
model.test_score = score
model.test_y = y_test_all
models.append(model)
#model.test_dist = pd.Series(probs)
return models
# Calculate the model threshold for predicting positives
def get_threshold(self, y_true, probs):
# calculate percent positive
pos = y_true.sum()/(len(y_true))
# use that percent as threshold cutoff
return sorted(probs, reverse=True)[int(round(len(probs)*pos))]
def weighted_score(self, y_true, probs):
# There are two ways we want to weight a prediction
# 1. More recent predictions are weighted more heavily
# 2. The larger the prediction value is weighted more heavily (positive or negative)
# score = 0
# threshold = self.get_threshold(pd.Series(y_true), probs)
# dist = pd.Series(probs)
# # First entries are older, last entries newer
# for i in range(0,len(y_true)):
# pred = probs[i]
# y = y_true[i]
# zscore = (pred - threshold) / dist.std()
# yp = zscore > 0
# if yp == y:
# score = score + 1 + i/len(y_true) #* abs(zscore)
# return score
# precision, recall, threshold = precision_recall_curve(y_pred, probs)
# s1 = auc(recall, precision)
# s2 = roc_auc_score(y_pred, probs)
# return gmean([s1,s2])
y_test_all = np.asarray(y_true)
probs_all = pd.Series(probs)
splits = 6
length = math.floor(len(probs_all)/splits)
start = 0
end = length-1
scores = []
for i in range(0,splits):
y_test = y_test_all[start:end]
if y_test.sum() != 0:
probs = probs_all[start:end]
precision, recall, threshold = precision_recall_curve(y_test, probs)
pauc = auc(recall, precision)
if math.isnan(pauc):
pauc = 0
scores.append(pauc*(1+i/10))
end = end + length
start = start + length
if (end >= len(probs_all)):
end = len(probs_all)-1
return gmean(scores)
def score_results(self, y_true, probs, threshold):
y_pred = probs > threshold
#return roc_auc_score(y_true, y_pred)
return accuracy_score(y_true, y_pred)
# y_test_all = np.asarray(y_true)
# probs_all = pd.Series(probs)
# splits = 6
# length = math.floor(len(probs_all)/splits)
# start = 0
# end = length-1
# scores = []
# for i in range(0,splits):
# y_test = y_test_all[start:end]
# if y_test.sum() != 0:
# probs = probs_all[start:end]
# precision, recall, threshold = precision_recall_curve(y_test, probs)
# pauc = auc(recall, precision)
# if math.isnan(pauc):
# pauc = 0
# scores.append(pauc)
# end = end + length
# start = start + length
# if (end >= len(probs_all)):
# end = len(probs_all)-1
# return gmean(scores)
def get_class_weights(self, y):
# Calculate class weights
pos = y.sum()/(len(y))
neg = 1 - pos
pw = neg/pos
nw = pos/neg
return {0:nw,1:pw}