| Overall Statistics |
|
Total Trades 16 Average Win 0.71% Average Loss -4.88% Compounding Annual Return -16.790% Drawdown 28.400% Expectancy -0.141 Net Profit -5.909% Sharpe Ratio -0.095 Probabilistic Sharpe Ratio 24.357% Loss Rate 25% Win Rate 75% Profit-Loss Ratio 0.15 Alpha 0.017 Beta -0.271 Annual Standard Deviation 0.461 Annual Variance 0.212 Information Ratio -0.352 Tracking Error 0.765 Treynor Ratio 0.161 Total Fees $18.20 |
from MyRsiAlphaModel import MyRsiAlphaModel
class ParticleQuantumCompensator(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2020, 3, 1) # Set Start Date
self.SetCash(100000) # Set Strategy Cash
self.AddAlpha(MyRsiAlphaModel())
self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel())
self.spy = self.AddEquity('SPY', Resolution.Daily).Symbol
def OnData(self, data):
if self.spy in data:
self.Plot('Close', 'SPY', data[self.spy].Close)
def OnOrderEvent(self, orderEvent):
if orderEvent.Direction == OrderDirection.Buy:
self.Plot('Price', 'Buy', orderEvent.FillPrice)
elif orderEvent.Direction == OrderDirection.Sell:
self.Plot('Price', 'Sell', orderEvent.FillPrice)class MyRsiAlphaModel(AlphaModel):
'''Uses Wilder's RSI to create insights.
Using default settings, a cross over below 30 or above 70 will trigger a new insight.'''
def __init__(self,
period = 14,
resolution = Resolution.Daily):
'''Initializes a new instance of the RsiAlphaModel class
Args:
period: The RSI indicator period'''
self.period = period
self.resolution = resolution
self.insightPeriod = Time.Multiply(Extensions.ToTimeSpan(resolution), period)
self.symbolDataBySymbol ={}
resolutionString = Extensions.GetEnumString(resolution, Resolution)
self.Name = '{}({},{})'.format(self.__class__.__name__, period, resolutionString)
def Update(self, algorithm, data):
'''Updates this alpha model with the latest data from the algorithm.
This is called each time the algorithm receives data for subscribed securities
Args:
algorithm: The algorithm instance
data: The new data available
Returns:
The new insights generated'''
insights = []
for symbol, symbolData in self.symbolDataBySymbol.items():
rsi = symbolData.RSI
algorithm.Plot('RSI', symbol.Value, rsi.Current.Value)
previous_state = symbolData.State
state = self.GetState(rsi, previous_state)
if state != previous_state and rsi.IsReady:
if state == State.TrippedLow:
insights.append(Insight.Price(symbol, self.insightPeriod, InsightDirection.Up))
if state == State.TrippedHigh:
insights.append(Insight.Price(symbol, self.insightPeriod, InsightDirection.Down))
symbolData.State = state
return insights
def OnSecuritiesChanged(self, algorithm, changes):
'''Cleans out old security data and initializes the RSI for any newly added securities.
Event fired each time the we add/remove securities from the data feed
Args:
algorithm: The algorithm instance that experienced the change in securities
changes: The security additions and removals from the algorithm'''
# clean up data for removed securities
symbols = [ x.Symbol for x in changes.RemovedSecurities ]
if len(symbols) > 0:
for subscription in algorithm.SubscriptionManager.Subscriptions:
if subscription.Symbol in symbols:
self.symbolDataBySymbol.pop(subscription.Symbol, None)
subscription.Consolidators.Clear()
# initialize data for added securities
addedSymbols = [ x.Symbol for x in changes.AddedSecurities if x.Symbol not in self.symbolDataBySymbol]
if len(addedSymbols) == 0: return
history = algorithm.History(addedSymbols, self.period, self.resolution)
for symbol in addedSymbols:
rsi = algorithm.RSI(symbol, self.period, MovingAverageType.Wilders, self.resolution)
if not history.empty:
ticker = SymbolCache.GetTicker(symbol)
if ticker not in history.index.levels[0]:
Log.Trace(f'RsiAlphaModel.OnSecuritiesChanged: {ticker} not found in history data frame.')
continue
for tuple in history.loc[ticker].itertuples():
rsi.Update(tuple.Index, tuple.close)
self.symbolDataBySymbol[symbol] = SymbolData(symbol, rsi)
def GetState(self, rsi, previous):
''' Determines the new state. This is basically cross-over detection logic that
includes considerations for bouncing using the configured bounce tolerance.'''
if rsi.Current.Value > 70:
return State.TrippedHigh
if rsi.Current.Value < 30:
return State.TrippedLow
if previous == State.TrippedLow:
if rsi.Current.Value > 35:
return State.Middle
if previous == State.TrippedHigh:
if rsi.Current.Value < 65:
return State.Middle
return previous
class SymbolData:
'''Contains data specific to a symbol required by this model'''
def __init__(self, symbol, rsi):
self.Symbol = symbol
self.RSI = rsi
self.State = State.Middle
class State(Enum):
'''Defines the state. This is used to prevent signal spamming and aid in bounce detection.'''
TrippedLow = 0
Middle = 1
TrippedHigh = 2