| Overall Statistics |
|
Total Trades 255 Average Win 4.76% Average Loss -1.85% Compounding Annual Return 30.662% Drawdown 52.600% Expectancy 1.224 Net Profit 1721.640% Sharpe Ratio 1.129 Probabilistic Sharpe Ratio 49.040% Loss Rate 38% Win Rate 62% Profit-Loss Ratio 2.56 Alpha 0.3 Beta -0.103 Annual Standard Deviation 0.255 Annual Variance 0.065 Information Ratio 0.542 Tracking Error 0.308 Treynor Ratio -2.795 Total Fees $5502.49 |
# https://quantpedia.com/Screener/Details/15
import pandas as pd
from datetime import datetime
class CountryEquityIndexesMomentumAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2010, 1, 1)
self.SetEndDate(2020,10,1)
self.SetEndDate(datetime.now())
self.SetCash(100000)
# create a dictionary to store momentum indicators for all symbols
self.data = {}
period = 3*21
# choose ten sector ETFs
self.symbols = ["GXC","EEM","SPY","EWG","EWY","IVV","ARKK","QQQ","SPXL","TMF"]# BLDRS Europe 100 ADR Index ETF
#self.symbols = ["SPY","IEF"]
# warm up the MOM indicator
self.SetWarmUp(period)
for symbol in self.symbols:
self.AddEquity(symbol, Resolution.Daily)
self.data[symbol] = self.MOM(symbol, period, Resolution.Daily)
# shcedule the function to fire at the month start
self.Schedule.On(self.DateRules.MonthStart("SPY"), self.TimeRules.AfterMarketOpen("SPY"), self.Rebalance)
def OnData(self, data):
pass
def Rebalance(self):
if self.IsWarmingUp: return
top = pd.Series(self.data).sort_values(ascending = False)[:5]
for kvp in self.Portfolio:
security_hold = kvp.Value
# liquidate the security which is no longer in the top momentum list
if security_hold.Invested and (security_hold.Symbol.Value not in top.index):
self.Liquidate(security_hold.Symbol)
added_symbols = []
for symbol in top.index:
if not self.Portfolio[symbol].Invested:
added_symbols.append(symbol)
for added in added_symbols:
self.SetHoldings(added, 1/len(added_symbols))