| Overall Statistics |
|
Total Trades 94 Average Win 0.52% Average Loss -0.50% Compounding Annual Return -0.523% Drawdown 11.300% Expectancy -0.330 Net Profit -7.936% Sharpe Ratio -0.343 Loss Rate 67% Win Rate 33% Profit-Loss Ratio 1.05 Alpha -0.004 Beta -0.001 Annual Standard Deviation 0.012 Annual Variance 0 Information Ratio -0.349 Tracking Error 0.187 Treynor Ratio 3.1 Total Fees $99.49 |
import numpy as np
### <summary>
### Basic template algorithm simply initializes the date range and cash. This is a skeleton
### framework you can use for designing an algorithm.
### </summary>
class BasicTemplateAlgorithm(QCAlgorithm):
'''Basic template algorithm simply initializes the date range and cash'''
def Initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.SetStartDate(2013,10,07) #Set Start Date
self.SetEndDate(2013,10,11) #Set End Date
self.SetCash(10000) #Set Strategy Cash
# Find more symbols here: http://quantconnect.com/data
self.symbols = ["XIV","VXX"]
for s in self.symbols:
self.AddEquity(s,Resolution.Minute)
self.window=360*50
self.SetWarmup(self.window)
self.counter = 0
for i in range(16):
self.Schedule.On(self.DateRules.EveryDay("XIV"),self.TimeRules.AfterMarketOpen("XIV",60+i*60),Action(self.runAndTrade))
def runAndTrade(self):
import numpy as np
# wait for warmup
if self.IsWarmingUp:
return
self.counter = self.counter + 1
if( self.counter % 2 == 0):
self.SetHoldings('XIV',0.5)
self.SetHoldings('VXX',0)
else:
self.SetHoldings('XIV',0)
self.SetHoldings('VXX',0.5)