| Overall Statistics |
|
Total Orders 412 Average Win 3.54% Average Loss -2.68% Compounding Annual Return -14.035% Drawdown 50.500% Expectancy -0.009 Start Equity 1000000 End Equity 745756.9 Net Profit -25.424% Sharpe Ratio -0.522 Sortino Ratio -0.405 Probabilistic Sharpe Ratio 1.188% Loss Rate 57% Win Rate 43% Profit-Loss Ratio 1.32 Alpha 0 Beta 0 Annual Standard Deviation 0.24 Annual Variance 0.058 Information Ratio -0.299 Tracking Error 0.24 Treynor Ratio 0 Total Fees $31299.84 Estimated Strategy Capacity $8400000.00 Lowest Capacity Asset VX YPDDEQD90YQX Portfolio Turnover 41.00% |
#region imports
from AlgorithmImports import *
#endregion
general_setting = {
"lookback": 30,
"lookback_RESOLUTION": "HOUR",
"ratio_method": "Regression",
"Take_Profit_pct": 0.3,
"Stop_Loss_pct": 0.08,
"p_value_threshold_entry": 0.0001,
"p_value_threshold_exit": 0.00001,
"rollover_days": 2,
}from AlgorithmImports import *
from QuantConnect.DataSource import *
from config import general_setting
import pickle
import numpy as np
import pandas as pd
import math
import statsmodels.api as sm
from pandas.tseries.offsets import BDay
from pykalman import KalmanFilter
from statsmodels.tsa.stattools import coint, adfuller
class CalendarSpread(QCAlgorithm):
def initialize(self) -> None:
self.SetTimeZone(TimeZones.NEW_YORK)
self.set_start_date(2023, 1, 1)
# self.set_end_date(2024,9,10)
self.set_cash(1000000)
self.universe_settings.asynchronous = True
self.zscore_df = {}
self.note1_price = {}
self.note2_price = {}
# Requesting data
# Futures.Currencies.EUR
# Futures.Currencies.MICRO_EUR
# Futures.Financials.Y_2_TREASURY_NOTE
# Futures.Financials.Y_5_TREASURY_NOTE
# Futures.Indices.MICRO_NASDAQ_100_E_MINI
# Futures.Indices.SP_500_E_MINI
# Futures.Indices.VIX
future_vix = self.add_future(Futures.Indices.VIX, resolution = Resolution.HOUR, extended_market_hours = True)
self.set_brokerage_model(BrokerageName.INTERACTIVE_BROKERS_BROKERAGE, AccountType.MARGIN)
future_vix.set_filter(0, 180)
self.future_vix_symbol = future_vix.symbol
self.first_vix_contract = None
self.second_vix_contract = None
self.third_vix_contract = None
self.first_vix_expiry = None
self.second_vix_expiry = None
self.third_vix_expiry = None
self.lookback = general_setting['lookback']
self.p_threshold_entry = general_setting['p_value_threshold_entry']
self.p_threshold_exit = general_setting['p_value_threshold_exit']
self.rollover_days = general_setting['rollover_days']
self.wt_1 = None
self.wt_2 = None
self.roll_signal = False
self.Margin_Call = False
self.prev_cap = None
self.large_diff = None
self.backwardation = False
self.diversion = None
self.coefs = []
self.entry1 = 1.78
self.entry2 = 2.42
self.entry3 = -0.94
self.entry4 = -1.73
self.exit1 = 1.15
self.exit2 = -0.38
self.ratio_30 = {}
self.quantile25_30_30_pos = {}
self.quantile50_30_30_pos = {}
self.quantile75_30_30_pos = {}
self.quantile25_30_30_neg = {}
self.quantile50_30_30_neg = {}
self.quantile75_30_30_neg = {}
def stats(self):
# Request Historical Data
df_vix1 = self.History(self.first_vix_contract.symbol, timedelta(self.lookback), Resolution.HOUR).rename(columns = {'close':'first'})
df_vix2 = self.History(self.second_vix_contract.symbol, timedelta(self.lookback), Resolution.HOUR).rename(columns = {'close':'second'})
# df_vix3 = self.History(self.third_vix_contract.symbol,timedelta(self.lookback), Resolution.HOUR).rename(columns = {'close':'third'})
df_merge = pd.merge(df_vix1, df_vix2, on = ['time'], how = 'inner')
vix1_log = np.array(df_merge['first'].apply(lambda x: math.log(x)))
vix2_log = np.array(df_merge['second'].apply(lambda x: math.log(x)))
# vix3_log = np.array(df_Gold3.apply(lambda x: math.log(x)))
# 1st & 2nd
X1 = sm.add_constant(vix1_log)
Y1 = vix2_log
model1 = sm.OLS(Y1, X1)
results1 = model1.fit()
sigma1 = math.sqrt(results1.mse_resid)
slope1 = results1.params[1]
intercept1 = results1.params[0]
res1 = results1.resid
zscore1 = res1/sigma1
adf1 = adfuller(res1)
p_value1 = adf1[1]
# spread = res1[len(res1)-1]
df_merge['spread'] = df_merge['second'] - df_merge['first']
spread = np.array(df_merge['spread'])
# test_passed1 = p_value1 <= self.p_threshold
# self.debug(f"p value is {p_value1}")
return [p_value1, zscore1, slope1, spread]
def on_data(self, slice: Slice) -> None:
# Entry signal
# if self.time.minute == 0 or self.time.minute ==10 or self.time.minute == 20 or self.time.minute==30 or self.time.minute == 40 or self.time.minute == 50:
if self.roll_signal == False and self.time.hour < 17 and self.time.hour > 8:
if not self.portfolio.Invested:
chain = slice.futures_chains.get(self.future_vix_symbol)
if chain:
contracts = [i for i in chain ]
e = [i.expiry for i in contracts]
e = sorted(list(set(sorted(e, reverse = True))))
# e = [i.expiry for i in contracts if i.expiry- self.Time> timedelta(5)]
# self.debug(f"the first contract is {e[0]}, the length of e is {len(e)}")
# expiry = e[0]
try:
self.first_vix_contract = [contract for contract in contracts if contract.expiry == e[0]][0]
self.second_vix_contract = [contract for contract in contracts if contract.expiry == e[1]][0]
# self.third_gold_contract = [contract for contract in contracts if contract.expiry == e[2]][0]
self.first_vix_expiry = e[0]
self.second_vix_expiry = e[1]
# self.third_gold_expiry = e[2]
stats = self.stats()
self.zscore_df[self.time] = stats[1][-1]
self.note1_price[self.time] = self.Securities[self.first_vix_contract.symbol].Price
self.note2_price[self.time] = self.Securities[self.second_vix_contract.symbol].Price
sigma = stats[3].std()
mean = stats[3].mean()
last_spread = stats[3][-1]
n = (last_spread-mean)/sigma
self.coefs.append(n)
self.ratio_30[self.time] = n
if len(self.coefs) >= 24 * 30:
self.coefs = self.coefs[-24 * 30:]
self.pos_coefs = [i for i in self.coefs if i > 0]
self.neg_coefs = [i for i in self.coefs if i < 0]
if len(self.pos_coefs) > 24 * 10:
pos_quantile = np.quantile( self.pos_coefs, [0.25,0.5,0.75])
self.entry1 = pos_quantile[1]
self.entry2 = pos_quantile[2]
self.exit1 = pos_quantile[0]
self.quantile25_30_30_pos[self.time] = pos_quantile[0]
self.quantile50_30_30_pos[self.time] = pos_quantile[1]
self.quantile75_30_30_pos[self.time] = pos_quantile[2]
if len(self.neg_coefs) > 24 * 10:
neg_quantile = np.quantile( self.neg_coefs, [0.25,0.5,0.75])
self.entry3 = neg_quantile[1]
self.entry4 = neg_quantile[0]
self.exit2 = neg_quantile[2]
self.quantile25_30_30_neg[self.time] = neg_quantile[0]
self.quantile50_30_30_neg[self.time] = neg_quantile[1]
self.quantile75_30_30_neg[self.time] = neg_quantile[2]
# if (self.first_vix_expiry.date() - self.time.date()).days > self.rollover_day:
self.trade_signal = True
# else:
# self.trade_signal = False
if self.trade_signal and ((self.first_vix_expiry.date() - self.time.date()).days > self.rollover_days):
self.wt_1 = 1/(1+stats[2])
self.wt_2 = 1 - self.wt_1
# if stats[3]<0:
if n > self.entry1 and (n < self.entry2):
self.set_holdings(self.first_vix_contract.symbol, -self.wt_1, tag = f'spread = mean + {round(n,2)}*sigma (diversion)')
self.set_holdings(self.second_vix_contract.symbol, self.wt_2, tag = f'spread = mean + {round(n,2)}*sigma (diversion)')
self.prev_cap = self.portfolio.total_portfolio_value
self.large_diff = True
if (n > self.entry2):
self.set_holdings(self.first_vix_contract.symbol, self.wt_1, tag = f'spread = mean + {round(n,2)}*sigma (mean reversion)')
self.set_holdings(self.second_vix_contract.symbol, -self.wt_2, tag = f'spread = mean + {round(n,2)}*sigma (mean reversion)')
self.prev_cap = self.portfolio.total_portfolio_value
self.large_diff = True
# self.debug(f"enter position: z score is {stats[1][-1]}")
elif n < self.entry3 and n > self.entry4:
self.set_holdings(self.first_vix_contract.symbol, self.wt_1, tag = f'spread < mean - {round(abs(n),2)}*sigma (diversion)')
self.set_holdings(self.second_vix_contract.symbol, -self.wt_2, tag = f'spread < mean - {round(abs(n),2)}*sigma (diversion)')
self.prev_cap = self.portfolio.total_portfolio_value
self.large_diff = False
# self.debug(f"enter position: z score is {stats[1][-1]}")
self.diversion = True
elif n < self.entry4:
self.set_holdings(self.first_vix_contract.symbol, -self.wt_1, tag = f'spread < mean - {round(abs(n),2)}*sigma (mean reversion)')
self.set_holdings(self.second_vix_contract.symbol, self.wt_2, tag = f'spread < mean - {round(abs(n),2)}*sigma (mean reversion)')
self.prev_cap = self.portfolio.total_portfolio_value
self.large_diff = False
# self.debug(f"enter position: z score is {stats[1][-1]}")
self.trade_signal = False
except:
return
else:
# exit signal
stats = self.stats()
sigma = stats[3].std()
mean = stats[3].mean()
last_spread = stats[3][-1]
n = (last_spread-mean)/sigma
self.wt_1 = 1/(1+stats[2])
self.wt_2 = 1 - self.wt_1
self.coefs.append(n)
self.ratio_30[self.time] = n
if len(self.coefs) >= 24 * 30:
self.coefs = self.coefs[-24 * 30:]
self.pos_coefs = [i for i in self.coefs if i > 0]
self.neg_coefs = [i for i in self.coefs if i < 0]
if len(self.pos_coefs) > 24 * 10:
pos_quantile = np.quantile( self.pos_coefs, [0.25,0.5,0.75])
self.entry1 = pos_quantile[1]
self.entry2 = pos_quantile[2]
self.exit1 = pos_quantile[0]
self.quantile25_30_30_pos[self.time] = pos_quantile[0]
self.quantile50_30_30_pos[self.time] = pos_quantile[1]
self.quantile75_30_30_pos[self.time] = pos_quantile[2]
if len(self.neg_coefs) > 24 * 10:
neg_quantile = np.quantile( self.neg_coefs, [0.25,0.5,0.75])
self.entry3 = neg_quantile[1]
self.entry4 = neg_quantile[0]
self.exit2 = neg_quantile[2]
self.quantile25_30_30_neg[self.time] = neg_quantile[0]
self.quantile50_30_30_neg[self.time] = neg_quantile[1]
self.quantile75_30_30_neg[self.time] = neg_quantile[2]
# self.zscore_df[self.time] = stats[1][-1]
# self.note1_price[self.time] = self.Securities[self.first_vix_contract.symbol].Price
# self.note2_price[self.time] = self.Securities[self.second_vix_contract.symbol].Price
# Roll over
if ((self.first_vix_expiry.date() - self.time.date()).days <= self.rollover_days and self.time.hour == 10 ):
self.roll_signal = True
if self.portfolio.total_portfolio_value>= self.prev_cap:
self.liquidate(tag = 'rollover; Win')
else:
self.liquidate(tag = 'rollover; Loss')
self.prev_cap = None
self.large_diff = None
return
# Take Profit / Stop Loss
# if self.prev_cap :
# if self.portfolio.total_portfolio_value> 1.1 * self.prev_cap:
# self.liquidate(tag = 'Take Profit')
# self.prev_cap = None
# self.large_diff = None
# return
# elif self.portfolio.total_portfolio_value< 0.93 * self.prev_cap:
# self.liquidate(tag = 'Stop Loss')
# self.prev_cap = None
# self.large_diff = None
# return
if self.diversion == True:
if (n > self.entry2 and self.large_diff == True):
if self.portfolio.total_portfolio_value>= self.prev_cap:
self.liquidate(tag = 'Diversion; Win')
else:
self.liquidate(tag = 'Diversion; Loss')
self.set_holdings(self.first_vix_contract.symbol, self.wt_1, tag = f'spread = mean + {round(n,2)}*sigma (mean_revesion)')
self.set_holdings(self.second_vix_contract.symbol, -self.wt_2, tag = f'spread = mean + {round(n,2)}*sigma (mean_reversion)')
self.prev_cap = self.portfolio.total_portfolio_value
self.large_diff = True
self.diversion = False
elif (n < self.entry4 and self.large_diff == False):
if self.portfolio.total_portfolio_value>= self.prev_cap:
self.liquidate(tag = 'Diversion; Win')
else:
self.liquidate(tag = 'Diversion; Loss')
self.set_holdings(self.first_vix_contract.symbol, -self.wt_1, tag = f'spread = mean - {abs(round(n,2))}*sigma (mean_revesion)')
self.set_holdings(self.second_vix_contract.symbol, self.wt_2, tag = f'spread = mean - {abs(round(n,2))}*sigma (mean_reversion)')
self.prev_cap = self.portfolio.total_portfolio_value
self.large_diff = False
self.diversion = False
# elif :
# if self.portfolio.total_portfolio_value>= self.prev_cap:
# self.liquidate(tag = 'Diversion; Win')
# else:
# self.liquidate(tag = 'Diversion; Loss')
# stats = self.stats()
# self.zscore_df[self.time] = stats[1][-1]
# self.note1_price[self.time] = self.Securities[self.first_vix_contract.symbol].Price
# self.note2_price[self.time] = self.Securities[self.second_vix_contract.symbol].Price
# sigma = stats[3].std()
# mean = stats[3].mean()
# last_spread = stats[3][-1]
# n = (last_spread-mean)/sigma
# self.set_holdings(self.first_vix_contract.symbol, self.wt_1, tag = f'spread = mean + {round(n,2)}*sigma (mean_revesion)')
# self.set_holdings(self.second_vix_contract.symbol, -self.wt_2, tag = f'spread = mean + {round(n,2)}*sigma (mean_reversion)')
# self.prev_cap = self.portfolio.total_portfolio_value
# self.large_diff = True
# # self.debug(f"exit position: z score is {stats[1][-1]}")
# self.diversion = False
else:
if ( n < self.exit1 and self.large_diff == True):
if self.portfolio.total_portfolio_value>= self.prev_cap:
self.liquidate(tag = 'Mean Reversion; Win')
else:
self.liquidate(tag = 'Mean Reversion; Loss')
self.diversion = None
self.prev_cap = None
self.large_diff = None
# self.debug(f"exit position: z score is {stats[1][-1]}")
elif (n > self.exit2 and self.large_diff == False):
if self.portfolio.total_portfolio_value>= self.prev_cap:
self.liquidate(tag = 'Mean Reversion; Win')
else:
self.liquidate(tag = 'Mean Reversion; Loss')
self.prev_cap = None
self.large_diff = None
self.diversion = None
# if not self.large_diff:
# if n > 0:
# if self.portfolio.total_portfolio_value>= self.prev_cap:
# self.close = self.liquidate(tag = 'Wrong Direction (n > 0); Win')
# else:
# self.close = self.liquidate(tag = 'Wrong Direction (n > 0); Loss')
# return
# if self.large_diff:
# if n < -0.3:
# if self.portfolio.total_portfolio_value>= self.prev_cap:
# self.close = self.liquidate(tag = 'Wrong Direction (n < 0); Win')
# else:
# self.close = self.liquidate(tag = 'Wrong Direction (n < 0); Loss')
# return
else:
stats = self.stats()
# self.plot('z_score_plot','z_score',stats[1][-1] )
# self.plot('p_value_plot','p_value', stats[0])
if self.first_vix_expiry.date() < self.time.date():
self.roll_signal = False
# if self.zscore_df:
# df = pd.DataFrame.from_dict(self.zscore_df, orient='index',columns=['zscore'])
# file_name = 'CalendarSpread/zscore_df'
# self.object_store.SaveBytes(file_name, pickle.dumps(df))
# if self.note1_price:
# df = pd.DataFrame.from_dict(self.note1_price, orient='index',columns=['price1'])
# file_name = 'CalendarSpread/note1_df'
# self.object_store.SaveBytes(file_name, pickle.dumps(df))
if self.ratio_30:
df = pd.DataFrame.from_dict(self.ratio_30, orient='index',columns=['ratio'])
file_name = 'CalendarSpread/ratio_30'
self.object_store.SaveBytes(file_name, pickle.dumps(df))
if self.quantile25_30_30_pos:
df = pd.DataFrame.from_dict(self.quantile25_30_30_pos, orient='index',columns=['quantile25_pos'])
file_name = 'CalendarSpread/quantile25_30_30_pos'
self.object_store.SaveBytes(file_name, pickle.dumps(df))
if self.quantile50_30_30_pos:
df = pd.DataFrame.from_dict(self.quantile50_30_30_pos, orient='index',columns=['quantile50_pos'])
file_name = 'CalendarSpread/quantile50_30_30_pos'
self.object_store.SaveBytes(file_name, pickle.dumps(df))
if self.quantile75_30_30_pos:
df = pd.DataFrame.from_dict(self.quantile75_30_30_pos, orient='index',columns=['quantile75_pos'])
file_name = 'CalendarSpread/quantile75_30_30_pos'
self.object_store.SaveBytes(file_name, pickle.dumps(df))
if self.quantile25_30_30_neg:
df = pd.DataFrame.from_dict(self.quantile25_30_30_neg, orient='index',columns=['quantile25_neg'])
file_name = 'CalendarSpread/quantile25_30_30_neg'
self.object_store.SaveBytes(file_name, pickle.dumps(df))
if self.quantile50_30_30_neg:
df = pd.DataFrame.from_dict(self.quantile50_30_30_neg, orient='index',columns=['quantile50_neg'])
file_name = 'CalendarSpread/quantile50_30_30_neg'
self.object_store.SaveBytes(file_name, pickle.dumps(df))
if self.quantile75_30_30_neg:
df = pd.DataFrame.from_dict(self.quantile75_30_30_neg, orient='index',columns=['quantile75_neg'])
file_name = 'CalendarSpread/quantile75_30_30_neg'
self.object_store.SaveBytes(file_name, pickle.dumps(df))
def OnOrderEvent(self, orderEvent):
if orderEvent.Status != OrderStatus.Filled:
return
# Webhook Notification
symbol = orderEvent.symbol
price = orderEvent.FillPrice
quantity = orderEvent.quantity
a = { "text": f"[Calendar Arbitrage Paper order update] \nSymbol: {symbol} \nPrice: {price} \nQuantity: {quantity}" }
payload = json.dumps(a)
self.notify.web("https://hooks.slack.com/services/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", payload)
def on_margin_call(self, requests):
self.debug('Margin Call is coming')
self.Margin_Call = True
a = { "text": f"[Calendar Spread Margin Call update]Margin Call is coming" }
payload = json.dumps(a)
self.notify.web("https://hooks.slack.com/services/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", payload)
return requests
def OnOrderEvent(self, orderEvent):
if orderEvent.Status != OrderStatus.Filled:
return
if self.Margin_Call:
qty = orderEvent.quantity
symbol = orderEvent.symbol
self.Margin_Call = False
self.debug(f'Hit margin call, the qty is {qty}')
if symbol == self.first_vix_contract.symbol:
self.debug(f'if come here, symbol is {symbol}, qty is {qty}')
self.market_order(self.second_vix_contract.symbol, -qty)
if symbol == self.second_vix_contract.symbol:
self.debug(f'if come here, symbol is {symbol}, qty is {qty}')
self.market_order(self.first_vix_contract.symbol, -qty)
# self.liquidate(tag = 'margin call')
# region imports
from AlgorithmImports import *
import numpy as np
import pandas as pd
import math
import statsmodels.api as sm
from pandas.tseries.offsets import BDay
from pykalman import KalmanFilter
from statsmodels.tsa.stattools import coint, adfuller
# endregion
from config import general_setting
class BasicTemplateFuturesAlgorithm(QCAlgorithm):
def Initialize(self):
self.debug("start calendar spread algo")
self.SetStartDate(2023, 10, 8)
self.SetCash(1000000)
self.universe_settings.resolution = Resolution.MINUTE
# lookback frequency settings
self.lookback = general_setting['lookback']
self.lookback_RESOLUTION = general_setting['lookback_RESOLUTION']
self.enter = general_setting["enter_level"]
self.exit = general_setting["exit_level"]
# Subscribe and set our expiry filter for the futures chain
future1 = self.AddFuture(Futures.Metals.GOLD, resolution=Resolution.MINUTE)
future1.SetFilter(timedelta(0), timedelta(365))
# benchmark = self.AddEquity("SPY")
# self.SetBenchmark(benchmark.Symbol)
seeder = FuncSecuritySeeder(self.GetLastKnownPrices)
self.SetSecurityInitializer(lambda security: seeder.SeedSecurity(security))
self.gold1_contract = None
self.gold2_contract = None
self.gold3_contract = None
self.minute_counter = 0
self.Schedule.On(self.date_rules.every_day(), self.TimeRules.At(18,0), self.reset_minute_counter) # Check Take profit and STOP LOSS every minute
def reset_minute_counter(self):
self.minute_counter = 0
def stats(self, symbols, method="Regression"):
# lookback here refers to market hour, whereas additional extended-market-hour data are also included.
if self.lookback_RESOLUTION == "MINUTE":
df_Gold1 = self.History(symbols[0], self.lookback, Resolution.MINUTE)
df_Gold2 = self.History(symbols[1], self.lookback, Resolution.MINUTE)
df_Gold3 = self.History(symbols[2], self.lookback, Resolution.MINUTE)
elif self.lookback_RESOLUTION == "HOUR":
df_Gold1 = self.History(symbols[0], self.lookback, Resolution.HOUR)
df_Gold2 = self.History(symbols[1], self.lookback, Resolution.HOUR)
df_Gold3 = self.History(symbols[2], self.lookback, Resolution.HOUR)
else:
df_Gold1 = self.History(symbols[0], self.lookback, Resolution.DAILY)
df_Gold2 = self.History(symbols[1], self.lookback, Resolution.DAILY)
df_Gold3 = self.History(symbols[2], self.lookback, Resolution.DAILY)
if df_Gold1.empty or df_Gold2.empty:
return 0
df_Gold1 = df_Gold1["close"]
df_Gold2 = df_Gold2["close"]
df_Gold3 = df_Gold3["close"]
Gold1_log = np.array(df_Gold1.apply(lambda x: math.log(x)))
Gold2_log = np.array(df_Gold2.apply(lambda x: math.log(x)))
Gold3_log = np.array(df_Gold3.apply(lambda x: math.log(x)))
# Gold1 & Gold2 Regression and ADF test
X1 = sm.add_constant(Gold1_log)
Y1 = Gold2_log
model1 = sm.OLS(Y1, X1)
results1 = model1.fit()
sigma1 = math.sqrt(results1.mse_resid)
slope1 = results1.params[1]
intercept1 = results1.params[0]
res1 = results1.resid
zscore1 = res1/sigma1
adf1 = adfuller(res1)
p_value1 = adf1[1]
test_passed1 = p_value1 <= general_setting['p_value_threshold']
self.debug(f"p value is {p_value1}")
# p 越小越显著
# Gold1 & Gold3 Regression and ADF test
X2 = sm.add_constant(Gold1_log)
Y2 = Gold3_log
model2 = sm.OLS(Y2, X2)
results2 = model2.fit()
sigma2 = math.sqrt(results2.mse_resid)
slope2 = results2.params[1]
intercept2 = results2.params[0]
res2 = results2.resid
zscore2 = res2/sigma2
adf2 = adfuller(res2)
p_value2 = adf2[1]
test_passed2 = p_value2 <= general_setting['p_value_threshold']
# Gold1 & Gold3 Regression and ADF test
X3 = sm.add_constant(Gold2_log)
Y3 = Gold3_log
model3 = sm.OLS(Y3, X3)
results3 = model3.fit()
sigma3 = math.sqrt(results3.mse_resid)
slope3 = results3.params[1]
intercept3 = results3.params[0]
res3 = results3.resid
zscore3 = res3/sigma3
adf3 = adfuller(res3)
p_value3 = adf3[1]
test_passed3 = p_value3 <= general_setting['p_value_threshold']
# Kalman Filtering to get parameters
if method == "Kalman_Filter":
obs_mat = sm.add_constant(Gold1_log, prepend=False)[:, np.newaxis]
trans_cov = 1e-5 / (1 - 1e-5) * np.eye(2)
kf = KalmanFilter(n_dim_obs=1, n_dim_state=2,
initial_state_mean=np.ones(2),
initial_state_covariance=np.ones((2, 2)),
transition_matrices=np.eye(2),
observation_matrices=obs_mat,
observation_covariance=0.5,
transition_covariance=0.000001 * np.eye(2))
state_means, state_covs = kf.filter(Gold2_log)
slope = state_means[:, 0][-1]
intercept = state_means[:, 1][-1]
self.printed = True
return [test_passed1, zscore1, slope1]
def OnData(self,slice):
for chain in slice.FutureChains:
contracts = list(filter(lambda x: x.Expiry > self.Time + timedelta(90), chain.Value))
if len(contracts) == 0:
continue
front1 = sorted(contracts, key = lambda x: x.Expiry)[0]
front2 = sorted(contracts, key = lambda x: x.Expiry)[1]
front3 = sorted(contracts, key = lambda x: x.Expiry)[2]
self.Debug (" Expiry " + str(front3.Expiry) + " - " + str(front3.Symbol))
self.gold1_contract = front1.Symbol
self.gold2_contract = front2.Symbol
self.gold3_contract = front3.Symbol