| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -19.258 Tracking Error 0.158 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 |
class FocusedBlueMosquito(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2020, 11, 6) # Set Start Date
self.SetEndDate(2020, 11, 10)
self.SetCash(100000) # Set Strategy Cash
self.symbol = self.AddEquity("SPY", Resolution.Minute).Symbol
self.gap_finder = GapFinder(self, self.symbol, 10)
self.Log(f"Gap finder log:\n{self.gap_finder.log.to_string()}")
class GapFinder:
def __init__(self, algorithm, symbol, days):
# Warm up history
history = algorithm.History(symbol, days + 1, Resolution.Daily)
if history.empty:
self.log = pd.DataFrame()
return
history = history.loc[symbol].drop('volume', axis=1)
# Calculate gaps
history['yesterdays_close'] = history['close'].shift(1)
history['gap'] = history.open - history.yesterdays_close
history = history.dropna()
# Check which gaps have filled
for time, row in history.iterrows():
if row.gap == 0:
continue
filled = False
for future_time, future_row in history.loc[time:].iterrows():
gap_up_filled = row.gap > 0 and future_row.low <= row.close
gap_down_filled = row.gap < 0 and future_row.high >= row.close
if gap_up_filled or gap_down_filled:
filled = True
break
history.loc[time, 'filled'] = filled
# Save gap log
self.log = history