| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -2.033 Tracking Error 0.103 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
from clr import AddReference
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Algorithm.Framework")
AddReference("QuantConnect.Indicators")
AddReference("QuantConnect.Logging")
AddReference("QuantConnect.Common")
from QuantConnect import *
from QuantConnect.Indicators import *
from QuantConnect.Logging import Log
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework import *
from QuantConnect.Algorithm.Framework.Alphas import *
class MuscularFluorescentYellowRabbit(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2021, 1, 1)
self.SetEndDate(2021, 11, 15)
# self.SetAccountCurrency("USDT")
self.SetCash(100000)
self.resolution = Resolution.Hour
self.UniverseSettings.Resolution = self.resolution
self.UniverseSettings.Leverage = 3
self.SetTimeZone(TimeZones.Utc)
self.AddCrypto('BTCUSDT', self.resolution, Market.Binance)
self.SetBrokerageModel(BrokerageName.QuantConnectBrokerage, AccountType.Margin)
self.itr = 0
def HourBarHandler(self, sender, bar):
self.consolidated_bars[bar.Symbol] = bar
def OnData(self, data):
''' OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
Arguments:
data: Slice object keyed by symbol containing the stock data
'''
self.SetHoldings('BTCUSDT', -0.1)