| Overall Statistics |
|
Total Trades 2 Average Win 0% Average Loss 0% Compounding Annual Return 153.425% Drawdown 3.900% Expectancy 0 Net Profit 3.835% Sharpe Ratio 0.862 Probabilistic Sharpe Ratio 48.355% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0.257 Beta -5.489 Annual Standard Deviation 0.17 Annual Variance 0.029 Information Ratio 0.641 Tracking Error 0.197 Treynor Ratio -0.027 Total Fees $147.50 |
from Selection.OptionUniverseSelectionModel import OptionUniverseSelectionModel
from datetime import date, timedelta
class OptionsUniverseSelectionModel(OptionUniverseSelectionModel):
def __init__(self, select_option_chain_symbols):
super().__init__(timedelta(1), select_option_chain_symbols)
def Filter(self, filter):
# Define options filter -- strikes +/- 3 and expiry between 0 and 180 days away
return (filteruniverse.IncludeWeeklys()
.BackMonths()
.PutsOnly()
.Strikes(-40, 0)
.Expiration(timedelta(self.filterStartDate), timedelta(self.filterEndDate))
)# ----------------------------------------------------------------------
#
# Custom Buying power model to solve insufficient funds problem. There is a fix coming in December/January
#
# ----------------------------------------------------------------------
class CustomBuyingPowerModel(BuyingPowerModel):
def GetMaximumOrderQuantityForTargetBuyingPower(self, parameters):
quantity = super().GetMaximumOrderQuantityForTargetBuyingPower(parameters).Quantity
quantity = np.floor(quantity / 100) * 100
return GetMaximumOrderQuantityResult(quantity)
def HasSufficientBuyingPowerForOrder(self, parameters):
return HasSufficientBuyingPowerForOrderResult(True)# Your New Python File
from System import TimeSpan
from System.Drawing import Color
import numpy as np
import pandas as pd
from QuantConnect import Chart, DataNormalizationMode
from QuantConnect.Orders import OrderDirection
from QuantConnect.Securities import BuyingPowerModel
from QuantConnect.Securities.Option import OptionPriceModels
from QuantConnect.Securities.Option import OptionStrategies
from QuantConnect.Data.Custom.CBOE import CBOE
from datetime import timedelta
# lib
from lib import SelectionModel
from lib import CustomBuyingPowerModel
# ----------------------------------------------------------------------
#
# Bull Put Credit Spread Algorithm
#
# ----------------------------------------------------------------------
class OptionsAlgorithm(QCAlgorithm):
# ----------------------------------------------------------------------
# Initialize QuantConnect Algorithm
# ----------------------------------------------------------------------
def Initialize(self):
# Base QuantConnect Parameters
self.SetStartDate(2017, 11, 1)
self.SetEndDate(2019, 2, 1)
self.SetCash(100000)
# Base Algorithm Paramters
self.investPercent = 0.9
self.filterStartDate = 25
self.filterEndDate = 45
self.shortDelta = 0.25
self.longDelta = 0.15
# Helper Variables
self.netCredit = None
self.shortOrder = None
self.longOrder = None
self.expiry = None
self.exitDate = None
self.inPosition = False
self.openPortfolioValue = None
# Set Instruments
option = self.AddOption("SPY")
option.PriceModel = OptionPriceModels.CrankNicolsonFD()
option.SetBuyingPowerModel(CustomBuyingPowerModel.CustomBuyingPowerModel())
self.optionSymbol = option.Symbol
self.SetUniverseSelection(SelectionModel.OptionsUniverseSelectionModel(self.SelectOptionsSymbols))
self.SetSecurityInitializer(lambda x: x.SetDataNormalizationMode(DataNormalizationMode.Raw))
self.equity = self.AddEquity("SPY", Resolution.Minute)
self.equity.SetDataNormalizationMode(DataNormalizationMode.Raw)
self.vix = self.AddData(CBOE, "VIX").Symbol
self.rsi = self.RSI("SPY", 10, MovingAverageType.Simple, Resolution.Daily, Field.Close)
# Charting
overlayPlot = Chart("Overlay Plot")
overlayPlot.AddSeries(Series("RSI", SeriesType.Line, "", Color.Aqua))
overlayPlot.AddSeries(Series("Over Bought", SeriesType.Line, "", Color.Navy))
overlayPlot.AddSeries(Series("Over Sold", SeriesType.Line, "", Color.Navy))
overlayPlot.AddSeries(Series("Mid", SeriesType.Line, "", Color.Navy))
overlayPlot.AddSeries(Series("Sell", SeriesType.Line, "", Color.Red))
overlayPlot.AddSeries(Series("Buy", SeriesType.Line, "", Color.Green))
self.AddChart(overlayPlot)
# Set warmup for Greeks and RSI
self.SetWarmUp(TimeSpan.FromDays(30))
# Check exits everyday
self.Schedule.On(self.DateRules.EveryDay(
"SPY"), self.TimeRules.AfterMarketOpen("SPY", 10), self.checkExit)
# ----------------------------------------------------------------------
# Primary Data function
# ----------------------------------------------------------------------
def OnData(self, slice):
if self.Time.hour == 9 and self.Time.minute == 31:
if self.IsWarmingUp:
return
#
# ISSUE: RSI IS NOT PLOTTING
#
self.Plot("Overlay Plot", "RSI", self.rsi.Current.Value)
self.Plot("Overlay Plot", "Over Bought", 80)
self.Plot("Overlay Plot", "Over Sold", 20)
self.Plot("Overlay Plot", "Mid", 50)
# if self.rsi.Current.Value > 50:
self.getContracts(slice)
if self.inPosition:
self.checkExit
# ----------------------------------------------------------------------
# Get Short and Long Put Contracts
# ----------------------------------------------------------------------
def getContracts(self, slice):
self.Debug('getting Contracts')
# Define the option Chain
chain = slice.OptionChains[self.optionSymbol]
# set float format so delta displays correctly
pd.set_option('display.float_format', lambda x: '%.5f' % x)
# Set relevant information in the Dataframe
df = pd.DataFrame([[x.Right, float(x.Strike), x.Expiry, float(x.BidPrice), float(x.AskPrice), x.Greeks.Delta, x.UnderlyingLastPrice] for x in chain],
index=[x.Symbol.Value for x in chain],
columns=['type', 'strike', 'expiry', 'askPrice', 'bidPrice', 'delta', 'underlyingLast'])
# Set the Dataframe to the option contract data frame
self.dfOptionsContracts = df
# Create a new column set to absolute value of the values of the delta column - the short delta to determine closest available contract to our specified detla
self.dfOptionsContracts["shortDeltaDiff"] = np.abs(
self.dfOptionsContracts["delta"] - self.shortDelta)
# Create a new column set to absolute value of the values of the delta column - the long delta to determine closest available contract to our specified detla
self.dfOptionsContracts["longDeltaDiff"] = np.abs(
self.dfOptionsContracts["delta"] - self.longDelta)
# Create two separate dateframes, one including the expiry date and the (delta - self.shortDelta ) values, and another including the expiry date and the (delta - self.longDelta) values
shortDeltaExpiryDf = self.dfOptionsContracts.filter(
items=["expiry", "shortDeltaDiff"])
longDeltaExpiryDf = self.dfOptionsContracts.filter(
items=["expiry", "longDeltaDiff"])
# Create three different dataframes from the shortDeltaExpiryDf and longDeltaExpiryDf:
# 1. A dateframe that combines the (delta - self.shortDelta/self.longDelta) values on the expiry dates so that they are matched only on the same date
# to prevent use of contracts expiring on different dates.
# 2. A dateframe from the dateframe in Step 1 that only contains the rows that contain the minimum value of (delta - self.shortDelta).
# 3. A dateframe that sorts the values of dataframe in Step 2 so that the data is sorted with the (delta - self.longDelta) values from least to greatest.
##
shortLongDeltaCombinedOnExpiry = pd.merge(left=shortDeltaExpiryDf, right=longDeltaExpiryDf, left_on='expiry', right_on='expiry')
combinedExpiryOnlyShortDeltaMinRows = shortLongDeltaCombinedOnExpiry[shortLongDeltaCombinedOnExpiry.shortDeltaDiff == shortLongDeltaCombinedOnExpiry.shortDeltaDiff.min()]
combinedExpirySortedByLongAndShortMin = combinedExpiryOnlyShortDeltaMinRows.sort_values(by=['shortDeltaDiff', 'longDeltaDiff'])
# Get the contract ids for short and long contracts (eg. SPY 190227P00261000)
shortContract = self.dfOptionsContracts[(self.dfOptionsContracts.expiry == combinedExpirySortedByLongAndShortMin.expiry.iloc[0]) & (
self.dfOptionsContracts.shortDeltaDiff == combinedExpirySortedByLongAndShortMin.shortDeltaDiff.iloc[0])].index[0]
longContract = self.dfOptionsContracts[(self.dfOptionsContracts.expiry == combinedExpirySortedByLongAndShortMin.expiry.iloc[0]) & (
self.dfOptionsContracts.longDeltaDiff == combinedExpirySortedByLongAndShortMin.longDeltaDiff.iloc[0])].index[0]
# Create a variable that stores a boolean for whether the two contracts are equal.
areTheySame = shortContract == longContract
# Create an iterator value for the longContract
longContractIterator = 0
# Iterate over the long contracts until it is not equal to the short contract. Usually just the next row of dateframe: combinedExpirySortedByLongAndShortMin
while areTheySame:
longContract = self.dfOptionsContracts[(self.dfOptionsContracts.expiry == combinedExpirySortedByLongAndShortMin.expiry.iloc[longContractIterator]) & (
self.dfOptionsContracts.longDeltaDiff == combinedExpirySortedByLongAndShortMin.longDeltaDiff.iloc[longContractIterator])].index[0]
longContractIterator += 1
areTheySame = shortContract == longContract
# self.Debug(f'SHORT: {shortContract.index[0]} and LONG: {longContract.index[0]} and are they EQUAL: {areTheySame} SHORT EXPIRY:{combinedExpirySortedByLongAndShortMin.expiry.iloc[0]} LONG EXPIRY: {combinedExpirySortedByLongAndShortMin.expiry.iloc[longContractIterator]}')
# Store the additonal contract information (eg. bidPrice, askPrice, delta, underlyingPrice)
shortContractInfo = self.dfOptionsContracts.loc[shortContract]
longContractInfo = self.dfOptionsContracts.loc[longContract]
# Log out what our contracts are:
self.Debug(
f"Underlying: {shortContractInfo.underlyingLast} Strike: {shortContractInfo.strike} Expiry: {shortContractInfo.expiry} Delta: {shortContractInfo.delta}")
self.Debug(
f"Underlying: {longContractInfo.underlyingLast} Strike: {longContractInfo.strike} Expiry: {longContractInfo.expiry} Delta: {longContractInfo.delta}")
self.placeOrder(shortContract, shortContractInfo,
longContract, longContractInfo)
# ----------------------------------------------------------------------
# Order Functions
# ----------------------------------------------------------------------
def placeOrder(self, shortContract, shortContractInfo, longContract, longContractInfo):
# Get our margin
margin = self.Portfolio.GetBuyingPower(
shortContract, OrderDirection.Sell)
# Get the quantities
qty = margin * self.investPercent / \
((shortContractInfo.bidPrice + longContractInfo.askPrice) * 100)
# Check that contracts are not the same
if qty < 1:
return
else:
self.Sell(OptionStrategies.BullPutSpread(self.optionSymbol,
shortContractInfo.strike, longContractInfo.strike, shortContractInfo.expiry), np.floor(qty))
self.Plot("Overlay Plot", "Buy", self.rsi.Current.Value)
# Set in position as true so we don't continue buying
self.inPosition = True
# Store the net Credit
self.netCredit = (np.abs(shortContractInfo.askPrice) -
np.abs(longContractInfo.bidPrice)) * np.abs(qty) * 100
# Generate last trading days
self.expiry = shortContractInfo.expiry
startDate = self.expiry + timedelta(days=-7)
endDate = self.expiry + timedelta(days=-1)
self.exitDate = self.TradingCalendar.GetTradingDays(
startDate, endDate)
# Set the openPortfolioValue for Profit Calculations
self.openPortfolioValue = self.Portfolio.TotalPortfolioValue
# ----------------------------------------------------------------------
# Check Exit
# ----------------------------------------------------------------------
def checkExit(self):
# store portfolio change
if self.openPortfolioValue is not None:
change = self.Portfolio.TotalPortfolioValue - self.openPortfolioValue
# Exit at 70% Profit
if (change / self.netCredit > .7):
self.liquidate()
self.Debug('Liquidating postion because we reached 70% profit')
# Exit at 20% loss
# if (change / self.netCredit < -.2):
# self.liquidate()
# self.Debug('Liquidating postion 20 percent stop loss')
# ----------------------------------------------------------------------
# Liquidate
# ----------------------------------------------------------------------
def liquidate(self):
self.Liquidate()
self.Plot("Overlay Plot", "Sell", self.rsi.Current.Value)
self.inPosition = False
# ----------------------------------------------------------------------
# Define Options universe
# ----------------------------------------------------------------------
def SelectOptionsSymbols(self, utcTime):
ticker = self.optionSymbol
return [Symbol.Create(ticker, SecurityType.Option, Market.USA, f"?{ticker}")]
# ----------------------------------------------------------------------
# Helper Functions
# ----------------------------------------------------------------------
def nearest(self, array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return array[idx]