| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
import pandas as pd
import numpy as np
class AdaptableYellowGreenElephant(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2020, 11, 12) # Set Start Date
self.SetEndDate(2020, 11, 12) # Set End Date
self.SetCash(100000) # Set Strategy Cash
self.AddEquity("IBM", Resolution.Daily)
self.AddEquity("AAPL", Resolution.Daily)
self.flag=True
def OnData(self, data):
if self.flag:
self.index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'),
('two', 'a'), ('two', 'b')])
self.s = pd.Series(np.arange(1.0, 5.0), index=self.index)
self.Log ("\n"+"Dataframe on pandas"+ "\n"+str(self.s)+"\n")
self.u=self.s.unstack(level=0)
self.Log ("\n"+"Whos is dataframe.unstack at level=0 on pandas"+ "\n"+str(self.u)+"\n")
self.dataframe = self.History([self.Symbol("IBM"), self.Symbol("AAPL")], 2)
self.Log ("\n"+"Dataframes on history"+ "\n"+str(self.dataframe)+"\n")
self.unc=self.dataframe["close"]
self.Log ("\n"+"Dataframes close price on history, no unstack done yet"+ "\n"+str(self.unc)+"\n")
self.uncz= self.dataframe["close"].unstack(level=0)
self.Log ("\n"+"Unstacking close price at level=0 (aka dataframe(close price).unstack at level=0 on QC\history)" + "\n" + str(self.uncz)+"\n")
self.Log ("\n"+"Why isnt dataframe.unstack at level=0 on pandas looking the same as dataframe.unstack at level=0 through Quantconnect\history?" + "\n")
self.flag=False