| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.903 Tracking Error 0.539 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from AlgorithmImports import *
### <summary>
### Example structure for structuring an algorithm with indicator and consolidator data for many tickers.
### </summary>
### <meta name="tag" content="consolidating data" />
### <meta name="tag" content="indicators" />
### <meta name="tag" content="using data" />
### <meta name="tag" content="strategy example" />
class MultipleSymbolConsolidationAlgorithm(QCAlgorithm):
# Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
def Initialize(self):
#magical incantation to make the algorithm brokerage use cryptos:
self.SetBrokerageModel(BrokerageName.Bitfinex, AccountType.Cash)
self.SetCash(69000)
# This is the period of bars we'll be creating
BarPeriod = TimeSpan.FromDays(1)
# This is the period of our sma indicators
ShortSMAPeriod = 10
LongSMAPeriod = 100
RSIPeriod = 4
# This is the number of consolidated bars we'll hold in symbol data for reference
RollingWindowSize = 100
# Holds all of our data keyed by each symbol
self.Data = {}
# Contains all of our crypto symbols
CryptoSymbols = ["BTCUSD",
"ETHUSD",
"ADAUSD",
"XRPUSD",
"SOLUSD",
#"AMPUSD",
"DOTUSD",
"DOGEUSD",
"LUNAUSD",
"AVAXUSD",
"UNIUSD",
"LINKUSD",
"LTCUSD",
# "ATOUSD",
# "MATICUSD",
"ICPUSD",
"FILUSD",
"XLMUSD",
"DAIUSD",
"FTTUSD",
"TRXUSD",
"ETCUSD",
"VETUSD",
"XTZUSD",
"XMRUSD",
# "XECUSD",
"EGLDUSD",
# "AXSUSD",
"EOSUSD",
"AAVEUSD",
"NEARUSD",
"FTMUSD",
# "IOTUSD",
"GRTUSD",
"KSMUSD",
"NEOUSD",
# "USTUSD",
"LEOUSD",
# "WAVESUSD",
"BSVUSD",
"MKRUSD",
"BTTUSD",
"COMPUSD",
"XDCUSD",
"CHZUSD",
# "DCRUSD",
"ZECUSD",
"SUSHIUSD",
"OMGUSD",
# "MNAUSD",
"CELUSD",
"SNXUSD",
"YFIUSD",
"ENJUSD",
"ZILUSD",
# "QTMUSD",
"BATUSD",
"BTGUSD",
"NEXOUSD",
"BNTUSD",
"ZRXUSD",
"DGBUSD",
# "CHSBUSD",
"FETUSD",
"LRCUSD",
"1INCHUSD",
"OCEANUSD",
"GNOUSD",
"BESTUSD",
"BANDUSD",
# "ROSEUSD",
"MIRUSD",
"ALBTUSD",
"UOSUSD",
"JSTUSD",
"BALUSD",
"SUNUSD",
"OXYUSD",
"RBTCUSD",
"SUKUUSD",
"BTSEUSD"]
self.SetStartDate(2021, 8, 1)
self.SetEndDate(2021, 9, 27)
# initialize our equity data
for symbol in CryptoSymbols:
equity = self.AddCrypto(symbol,Resolution.Hour, Market.Bitfinex)
self.Data[symbol] = SymbolData(equity.Symbol, BarPeriod, RollingWindowSize)
# loop through all our symbols and request data subscriptions and initialize indicator
for symbol, symbolData in self.Data.items():
# define the indicator for SMA10
symbolData.SMA10 = SimpleMovingAverage(self.CreateIndicatorName(symbol, "SMA" + str(ShortSMAPeriod), Resolution.Daily), ShortSMAPeriod)
symbolData.SMA100 = SimpleMovingAverage(self.CreateIndicatorName(symbol, "SMA" + str(LongSMAPeriod), Resolution.Daily), LongSMAPeriod)
symbolData.RSI4 = RelativeStrengthIndex(self.CreateIndicatorName(symbol, "RSI" + str(RSIPeriod), Resolution.Daily), RSIPeriod, MovingAverageType.Wilders)
# define a consolidator to consolidate data for this symbol on the requested period
consolidator = TradeBarConsolidator(BarPeriod) if symbolData.Symbol.SecurityType == SecurityType.Crypto else QuoteBarConsolidator(BarPeriod)
# write up our consolidator to update the indicator
consolidator.DataConsolidated += self.OnDataConsolidated
# we need to add this consolidator so it gets auto updates
self.SubscriptionManager.AddConsolidator(symbolData.Symbol, consolidator)
def OnDataConsolidated(self, sender, bar):
self.Data[bar.Symbol.Value].SMA10.Update(bar.Time, bar.Close)
self.Data[bar.Symbol.Value].SMA100.Update(bar.Time, bar.Close)
self.Data[bar.Symbol.Value].RSI4.Update(bar.Time, bar.Close)
self.Data[bar.Symbol.Value].Bars.Add(bar)
# OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
# Argument "data": Slice object, dictionary object with your stock data
def OnData(self,data):
# loop through each symbol in our structure
for symbol in self.Data.keys():
self.Debug(symbol)
symbolData = self.Data[symbol]
# this check proves that this symbol was JUST updated prior to this OnData function being called
if symbolData.IsReady() and symbolData.WasJustUpdated(self.Time):
if not self.Portfolio[symbol].Invested:
if symbolData.SMA10 > symbolData.SMA100:
if symbolData.RSI4 < 10:
self.Debug(symbol+"**")
self.MarketOrder(symbol, 0.1)
# End of a trading day event handler. This method is called at the end of the algorithm day (or multiple times if trading multiple assets).
# Method is called 10 minutes before closing to allow user to close out position.
def OnEndOfDay(self, symbol):
i = 0
for symbol in sorted(self.Data.keys()):
symbolData = self.Data[symbol]
# we have too many symbols to plot them all, so plot every other
i += 1
if symbolData.IsReady() and i%2 == 0:
self.Plot(symbol, symbol, symbolData.RSI4.Current.Value)
class SymbolData(object):
def __init__(self, symbol, barPeriod, windowSize):
self.Symbol = symbol
# The period used when population the Bars rolling window
self.BarPeriod = barPeriod
# A rolling window of data, data needs to be pumped into Bars by using Bars.Update( tradeBar ) and can be accessed like:
# mySymbolData.Bars[0] - most first recent piece of data
# mySymbolData.Bars[5] - the sixth most recent piece of data (zero based indexing)
self.Bars = RollingWindow[IBaseDataBar](windowSize)
# The simple moving average indicator for our symbol
self.SMA = None
# Returns true if all the data in this instance is ready (indicators, rolling windows, ect...)
def IsReady(self):
return self.Bars.IsReady and self.SMA10.IsReady and self.SMA100.IsReady and self.RSI4.IsReady
# Returns true if the most recent trade bar time matches the current time minus the bar's period, this
# indicates that update was just called on this instance
def WasJustUpdated(self, current):
return self.Bars.Count > 0 and self.Bars[0].Time == current - self.BarPeriod