Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -236.591 Tracking Error 0.141 Treynor Ratio 0 Total Fees $0.00 |
#Return stocks with volume above XX premarket in November so far clr.AddReference('QuantConnect.Research') from QuantConnect.Research import QuantBook class TachyonMultidimensionalChamber(QCAlgorithm): def Initialize(self): self.SetStartDate(2020, 11, 1) # Set Start Date self.SetEndDate(2020, 11, 5) # Set Start Date self.SetCash(100000) # Set Strategy Cash # self.AddEquity("SPY", Resolution.Minute) #self.AddEquity("AAPL", Resolution.Minute, extendedMarketHours = True) self.AddUniverse(self.CoarseSelectionFunction) self.UniverseSettings.ExtendedMarketHours = True self.UniverseSettings.Resolution = Resolution.Minute def CoarseSelectionFunction(self, universe): selected = [] tickers = [] #universe = sorted(universe, key=lambda c: c.Volume, reverse=True) #universe = [c for c in universe if c.Price > 10] #[:100] #coarse.Value = closing price of previous day #coarse.Volume = volume of previous day, with start date 11/1 volume is 180368663, 190573480 on thinkorswim. self.UniverseSettings.ExtendedMarketHours T or F doesn't change this #len(universe) this is all stocks for coarse in universe: #qb = QuantBook() #currstock = qb.AddEquity(coarse.Symbol) #startDate = datetime() #today, from midnight #endDate = datetime(2020, 11, 18) #today, until 9:29 #df = qb.History(currstock.Symbol, startDate, endDate, Resolution.Minute) if coarse.Volume > 50000000 and coarse.Value > 10 and coarse.HasFundamentalData: self.Log(coarse) selected.append(coarse.Symbol) tickers.append(str(coarse.Value) + " " + str(coarse.Volume) + " " + str(coarse.Market) + " " + str(coarse.Price)) self.Log(self.Time) self.Log(tickers) self.Log(len(tickers)) return selected #list of objects of type Symbol #def OnSecuritiesChanged(self, changes): # for security in changes.RemovedSecurities: # self.Liquidate(security.Symbol) # # for security in changes.AddedSecurities: # self.SetHoldings(security.Symbol, 0.10) def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' # if not self.Portfolio.Invested: # self.SetHoldings("SPY", 1)