| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -236.591 Tracking Error 0.141 Treynor Ratio 0 Total Fees $0.00 |
#Return stocks with volume above XX premarket in November so far
clr.AddReference('QuantConnect.Research')
from QuantConnect.Research import QuantBook
class TachyonMultidimensionalChamber(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2020, 11, 1) # Set Start Date
self.SetEndDate(2020, 11, 5) # Set Start Date
self.SetCash(100000) # Set Strategy Cash
# self.AddEquity("SPY", Resolution.Minute)
#self.AddEquity("AAPL", Resolution.Minute, extendedMarketHours = True)
self.AddUniverse(self.CoarseSelectionFunction)
self.UniverseSettings.ExtendedMarketHours = True
self.UniverseSettings.Resolution = Resolution.Minute
def CoarseSelectionFunction(self, universe):
selected = []
tickers = []
#universe = sorted(universe, key=lambda c: c.Volume, reverse=True)
#universe = [c for c in universe if c.Price > 10] #[:100]
#coarse.Value = closing price of previous day
#coarse.Volume = volume of previous day, with start date 11/1 volume is 180368663, 190573480 on thinkorswim. self.UniverseSettings.ExtendedMarketHours T or F doesn't change this
#len(universe) this is all stocks
for coarse in universe:
#qb = QuantBook()
#currstock = qb.AddEquity(coarse.Symbol)
#startDate = datetime() #today, from midnight
#endDate = datetime(2020, 11, 18) #today, until 9:29
#df = qb.History(currstock.Symbol, startDate, endDate, Resolution.Minute)
if coarse.Volume > 50000000 and coarse.Value > 10 and coarse.HasFundamentalData:
self.Log(coarse)
selected.append(coarse.Symbol)
tickers.append(str(coarse.Value) + " " + str(coarse.Volume) + " " + str(coarse.Market) + " " + str(coarse.Price))
self.Log(self.Time)
self.Log(tickers)
self.Log(len(tickers))
return selected #list of objects of type Symbol
#def OnSecuritiesChanged(self, changes):
# for security in changes.RemovedSecurities:
# self.Liquidate(security.Symbol)
#
# for security in changes.AddedSecurities:
# self.SetHoldings(security.Symbol, 0.10)
def OnData(self, data):
'''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
Arguments:
data: Slice object keyed by symbol containing the stock data
'''
# if not self.Portfolio.Invested:
# self.SetHoldings("SPY", 1)