| Overall Statistics |
|
Total Trades 1664 Average Win 0.65% Average Loss -1.25% Compounding Annual Return 42.393% Drawdown 15.400% Expectancy 0.129 Net Profit 257.246% Sharpe Ratio 1.487 Probabilistic Sharpe Ratio 75.404% Loss Rate 26% Win Rate 74% Profit-Loss Ratio 0.52 Alpha 0.306 Beta -0.027 Annual Standard Deviation 0.204 Annual Variance 0.042 Information Ratio 0.715 Tracking Error 0.286 Treynor Ratio -11.194 Total Fees $12465.89 Estimated Strategy Capacity $0 Lowest Capacity Asset ONTO X91R7VLCNM91 Portfolio Turnover 11.06% |
#region imports
from AlgorithmImports import *
#endregion
from QuantConnect.Data.UniverseSelection import *
class BasicTemplateAlgorithm(QCAlgorithm):
def __init__(self):
# set the flag for rebalance
self.reb = 1
# Number of stocks to pass CoarseSelection process
self.num_coarse = 5000
# Number of stocks to long/short
self.num_fine = 10
self.symbols = None
self.first_month = 0
self.topFine = None
def Initialize(self):
self.SetCash(100000)
self.SetStartDate(2020,1,1)
# if not specified, the Backtesting EndDate would be today
# self.SetEndDate(2017,4,30)
self.spy = self.AddEquity("SPY", Resolution.Daily).Symbol
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction,self.FineSelectionFunction)
# Schedule the rebalance function to execute at the begining of each month
self.Schedule.On(self.DateRules.MonthStart(self.spy),
self.TimeRules.AfterMarketOpen(self.spy,5), Action(self.rebalance))
self.AddRiskManagement(MaximumUnrealizedProfitPercentPerSecurity(0.05))
# self.SetRiskManagement(MaximumDrawdownPercentPerSecurity(0.05))
def CoarseSelectionFunction(self, coarse):
# if the rebalance flag is not 1, return null list to save time.
if self.reb != 1:
return self.topFine if self.topFine is not None else []
# make universe selection once a month
# drop stocks which have no fundamental data or have too low prices
selected = [x for x in coarse if (x.HasFundamentalData)
and (float(x.Price) > 5)]
sortedByDollarVolume = sorted(selected, key=lambda x: x.DollarVolume, reverse=True)
top = sortedByDollarVolume[:self.num_coarse]
return [i.Symbol for i in top]
def FineSelectionFunction(self, fine):
# return null list if it's not time to rebalance
if self.reb != 1:
return self.topFine if self.topFine is not None else []
self.reb = 0
# drop stocks which don't have the information we need.
# you can try replacing those factor with your own factors here
filtered_fine = [x for x in fine if x.OperationRatios.OperationMargin.Value
and x.ValuationRatios.PriceChange1M
and x.ValuationRatios.BookValuePerShare]
self.Log('remained to select %d'%(len(filtered_fine)))
# rank stocks by three factor.
sortedByfactor1 = sorted(filtered_fine, key=lambda x: x.OperationRatios.OperationMargin.Value, reverse=True)
sortedByfactor2 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.PriceChange1M, reverse=True)
sortedByfactor3 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.BookValuePerShare, reverse=True)
stock_dict = {}
# assign a score to each stock, you can also change the rule of scoring here.
for i,ele in enumerate(sortedByfactor1):
rank1 = i
rank2 = sortedByfactor2.index(ele)
rank3 = sortedByfactor3.index(ele)
score = sum([rank1*0.34,rank2*0.33,rank3*0.33])
stock_dict[ele] = score
# sort the stocks by their scores
self.sorted_stock = sorted(stock_dict.items(), key=lambda d:d[1],reverse=False)
sorted_symbol = [x[0] for x in self.sorted_stock]
# sotre the top stocks into the long_list and the bottom ones into the short_list
self.long = [x for x in sorted_symbol[:self.num_fine]]
self.short = [x for x in sorted_symbol[-self.num_fine:]]
self.topFine = [i.Symbol for i in self.long + self.short]
return self.topFine
def OnData(self, data):
pass
def rebalance(self):
if self.first_month == 0:
self.first_month += 1
return
# if this month the stock are not going to be long/short, liquidate it.
long_short_list = self.topFine
for i in self.Portfolio.Values:
if (i.Invested) and (i.Symbol not in long_short_list):
self.Liquidate(i.Symbol)
# Alternatively, you can liquidate all the stocks at the end of each month.
# Which method to choose depends on your investment philosiphy
# if you prefer to realized the gain/loss each month, you can choose this method.
#self.Liquidate()
# Assign each stock equally. Alternatively you can design your own portfolio construction method
for i in self.long:
self.SetHoldings(i.Symbol, 0.9/self.num_fine)
for i in self.short:
self.SetHoldings(i.Symbol, -0.9/self.num_fine)
self.reb = 1