| Overall Statistics |
|
Total Trades 3867 Average Win 0.54% Average Loss -0.27% Compounding Annual Return 5.526% Drawdown 63.600% Expectancy 0.264 Net Profit 208.048% Sharpe Ratio 0.293 Probabilistic Sharpe Ratio 0.002% Loss Rate 58% Win Rate 42% Profit-Loss Ratio 1.99 Alpha 0.079 Beta -0.008 Annual Standard Deviation 0.267 Annual Variance 0.071 Information Ratio 0.029 Tracking Error 0.321 Treynor Ratio -10.14 Total Fees $9406.47 |
from Execution.ImmediateExecutionModel import ImmediateExecutionModel
from Portfolio.EqualWeightingPortfolioConstructionModel import EqualWeightingPortfolioConstructionModel
class NetNet(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1) # Set Start Date
# self.SetEndDate(2020, 10, 31)
self.SetCash(100000) # Set Strategy Cash
self.SetUniverseSelection(FineFundamentalUniverseSelectionModel(self.CoarseSelectionFunction, self.FineSelectionFunction, None, None))
self.UniverseSettings.Resolution = Resolution.Daily
self.SetSecurityInitializer(lambda x: x.SetDataNormalizationMode(DataNormalizationMode.Raw))
self.SetAlpha(NetNetAlpha())
self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel(lambda time: None))
self.Settings.RebalancePortfolioOnInsightChanges = True
self.Settings.RebalancePortfolioOnSecurityChanges = False
self.SetExecution(ImmediateExecutionModel())
self.SetBenchmark("SPY")
def OnData(self, data):
'''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
Arguments:
data: Slice object keyed by symbol containing the stock data
'''
# if not self.Portfolio.Invested:
# self.SetHoldings("SPY", 1)
# on 15 Jan, filter for securities with fundamental data
def CoarseSelectionFunction(self, coarse):
# if self.Time.month == 10 and self.Time.day == 18 and self.Time.year == 2018:
if not self.Portfolio.Invested:
filtered = [ x.Symbol for x in coarse if x.HasFundamentalData ]
return filtered
else:
return Universe.Unchanged
# on 15 Jan, filter first for securities with shares and then filter a second time for net net stocks
def FineSelectionFunction(self, fine):
filtered = [ x for x in fine if ((x.FinancialStatements.BalanceSheet.CurrentAssets.ThreeMonths - x.FinancialStatements.BalanceSheet.TotalLiabilitiesAsReported.ThreeMonths - x.FinancialStatements.BalanceSheet.PreferredStock.ThreeMonths) > 0) and (x.FinancialStatements.BalanceSheet.OrdinarySharesNumber.ThreeMonths > 0) ]
# filtered = [ x for x in filtered if (x.FinancialStatements.BalanceSheet.OrdinarySharesNumber.ThreeMonths > 0) ]
# filtered = [ x for x in filtered if (x.FinancialStatements.BalanceSheet.PreferredStock.ThreeMonths > 0) ]
filtered = [ x.Symbol for x in filtered if (x.Price / ((x.FinancialStatements.BalanceSheet.CurrentAssets.ThreeMonths - x.FinancialStatements.BalanceSheet.TotalLiabilitiesAsReported.ThreeMonths - x.FinancialStatements.BalanceSheet.PreferredStock.ThreeMonths) / x.FinancialStatements.BalanceSheet.OrdinarySharesNumber.ThreeMonths)) <= 0.66 ]
# for x in filtered:
# self.Log("Symbol: " + str(x.Symbol))
# self.Log("Name: " + x.CompanyReference.LegalName)
# self.Log(str(self.Time.month) + str(self.Time.day) + str(self.Time.year))
# self.Log("Price: " + str(x.Price))
# self.Log("Current Assets: " + str(x.FinancialStatements.BalanceSheet.CurrentAssets.ThreeMonths))
# self.Log("Total Liabilities: " + str(x.FinancialStatements.BalanceSheet.TotalLiabilitiesAsReported.ThreeMonths))
# self.Log("Preferred Stock: " + str(x.FinancialStatements.BalanceSheet.PreferredStock.ThreeMonths))
# self.Log("Shares: " + str(x.FinancialStatements.BalanceSheet.OrdinarySharesNumber.ThreeMonths))
# filtered = [ x.Symbol for x in filtered ]
return filtered
class NetNetAlpha(AlphaModel):
def __init__(self):
pass
# self.lastMonth = -1
def OnSecuritiesChanged(self, algorithm, changes):
pass
def Update(self, algorithm, data):
insights = []
# if algorithm.Time.month == 10 and algorithm.Time.day == 18 and algorithm.Time.year == 2018:
if not algorithm.Portfolio.Invested:
for security in algorithm.ActiveSecurities.Values:
# price = security.Price
# currentAssets = security.Fundamentals.FinancialStatements.BalanceSheet.CurrentAssets.ThreeMonths
# totalLiabilities = security.Fundamentals.FinancialStatements.BalanceSheet.TotalLiabilitiesAsReported.ThreeMonths
# shares = security.Fundamentals.FinancialStatements.BalanceSheet.OrdinarySharesNumber.ThreeMonths
# if ( price / ( (currentAssets - totalLiabilities) / shares ) <= 0.66 ):
# insights.append(Insight.Price(security.Symbol, timedelta(days = 366), InsightDirection.Up))
insights.append(Insight.Price(security.Symbol, timedelta(days=254), InsightDirection.Up))
return insights
else:
return insights