| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.586 Tracking Error 0.259 Treynor Ratio 0 Total Fees $0.00 |
from Execution.ImmediateExecutionModel import ImmediateExecutionModel
from HealthcareUniverse import HealthcareUniverse
from datetime import timedelta
from enum import Enum
class TachyonModulatedCircuit(QCAlgorithm):
def Initialize(self):
# Set Start Date so that backtest has 5+ years of data
# The blocked section of code below is to remain UNCHANGED for the weekly competitions.
#
# Insight-weighting portfolio construction model:
# - You can change the rebalancing date rules or portfolio bias
# - For more info see https://github.com/QuantConnect/Lean/blob/master/Algorithm.Framework/Portfolio/InsightWeightingPortfolioConstructionModel.py
#
# Use the Alpha Streams Brokerage Model:
# - Developed in conjunction with funds to model their actual fees, costs, etc. Please do not modify other models.
###############################################################################################################################
self.SetStartDate(2019, 3, 1) # 5 years up to the submission date
self.SetCash(1000000) # Set $1m Strategy Cash to trade significant AUM
self.SetBenchmark('SPY') # SPY Benchmark
self.SetBrokerageModel(AlphaStreamsBrokerageModel())
self.SetExecution(ImmediateExecutionModel())
self.SetPortfolioConstruction(InsightWeightingPortfolioConstructionModel())
###############################################################################################################################
# Do not change the code above
# Add the alpha model and anything else you want below
self.AddAlpha(MyCompetitionAlphaModel())
# Add a universe selection model
self.SetUniverseSelection(HealthcareUniverse())
class MyCompetitionAlphaModel(AlphaModel):
def __init__(self,
period = 14,
resolution = Resolution.Daily):# *args, **kwargs):
'''Initializes a new default instance of your Alpha Model class.'''
self.period = period
self.resolution = resolution
self.insightPeriod = Time.Multiply(Extensions.ToTimeSpan(resolution), period)
self.symbolDataBySymbol ={}
def Update(self, algorithm, data):
'''Updates this alpha model with the latest data from the algorithm.
This is called each time the algorithm receives data for subscribed securities
Args:
algorithm: The algorithm instance
data: The new data available
Returns:
The new insights generated'''
insights = []
# This is where insights are returned, which are then passed to the
# Portfolio Construction, Risk, and Execution models.
# The following Insight properties MUST be set before returning
# - Symbol -- Secuirty Symbol
# - Duration -- Time duration that the Insight is in effect
# - Direction -- Direction of predicted price movement
# - Weight -- Proportion of algorithm capital to be allocated to this Insight
for symbol, symbolData in self.symbolDataBySymbol.items():
rsi = symbolData.RSI
previous_state = symbolData.State
state = self.GetState(rsi, previous_state)
wt = 1/len(self.symbolDataBySymbol.items())
if state != previous_state and rsi.IsReady:
if state == State.TrippedLow:
insights.append(Insight.Price(symbol, self.insightPeriod, InsightDirection.Up,wt))
if state == State.TrippedHigh:
insights.append(Insight.Price(symbol, self.insightPeriod, InsightDirection.Down,wt))
symbolData.State = state
return insights
def OnSecuritiesChanged(self, algorithm, changes):
'''Event fired each time the we add/remove securities from the data feed
Args:
algorithm: The algorithm instance that experienced the change in securities
changes: The security additions and removals from the algorithm'''
symbols = [ x.Symbol for x in changes.RemovedSecurities ]
if len(symbols) > 0:
for subscription in algorithm.SubscriptionManager.Subscriptions:
if subscription.Symbol in symbols:
self.symbolDataBySymbol.pop(subscription.Symbol, None)
subscription.Consolidators.Clear()
# initialize data for added securities
addedSymbols = [ x.Symbol for x in changes.AddedSecurities if x.Symbol not in self.symbolDataBySymbol]
if len(addedSymbols) == 0: return
history = algorithm.History(addedSymbols, self.period, self.resolution)
for symbol in addedSymbols:
rsi = algorithm.RSI(symbol, self.period, MovingAverageType.Wilders, self.resolution)
if not history.empty:
ticker = SymbolCache.GetTicker(symbol)
if ticker not in history.index.levels[0]:
continue
for tuple in history.loc[ticker].itertuples():
rsi.Update(tuple.Index, tuple.close)
self.symbolDataBySymbol[symbol] = SymbolData(symbol, rsi)
def GetState(self, rsi, previous):
''' Determines the new state. This is basically cross-over detection logic that
includes considerations for bouncing using the configured bounce tolerance.'''
if rsi.Current.Value > 70:
return State.TrippedHigh
if rsi.Current.Value < 30:
return State.TrippedLow
if previous == State.TrippedLow:
if rsi.Current.Value > 35:
return State.Middle
if previous == State.TrippedHigh:
if rsi.Current.Value < 65:
return State.Middle
return previous
class SymbolData:
'''Contains data specific to a symbol required by this model'''
def __init__(self, symbol, rsi):
self.Symbol = symbol
self.RSI = rsi
self.State = State.Middle
class State(Enum):
'''Defines the state. This is used to prevent signal spamming and aid in bounce detection.'''
TrippedLow = 0
Middle = 1
TrippedHigh = 2from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel
class HealthcareUniverse(FundamentalUniverseSelectionModel):
'''
This module selects the most liquid stocks listed on the Nasdaq Stock Exchange.
'''
def __init__(self, filterFineData = True, universeSettings = None, securityInitializer = None):
'''Initializes a new default instance of the TechnologyUniverseModule'''
super().__init__(filterFineData, universeSettings, securityInitializer)
self.numberOfSymbolsCoarse = 1000
self.numberOfSymbolsFine = 100
self.dollarVolumeBySymbol = {}
self.lastMonth = -1
def SelectCoarse(self, algorithm, coarse):
'''
Performs a coarse selection:
-The stock must have fundamental data
-The stock must have positive previous-day close price
-The stock must have positive volume on the previous trading day
'''
if algorithm.Time.month == self.lastMonth:
return Universe.Unchanged
sortedByDollarVolume = sorted([x for x in coarse if x.HasFundamentalData and x.Volume > 0 and x.Price > 0],
key = lambda x: x.DollarVolume, reverse=True)[:self.numberOfSymbolsCoarse]
self.dollarVolumeBySymbol = {x.Symbol:x.DollarVolume for x in sortedByDollarVolume}
# If no security has met the QC500 criteria, the universe is unchanged.
if len(self.dollarVolumeBySymbol) == 0:
return Universe.Unchanged
return list(self.dollarVolumeBySymbol.keys())
def SelectFine(self, algorithm, fine):
'''
Performs a fine selection for companies in the Morningstar Banking Sector
'''
# Filter stocks and sort on dollar volume
sortedByDollarVolume = sorted([x for x in fine if x.AssetClassification.MorningstarSectorCode == MorningstarSectorCode.Healthcare],
key = lambda x: self.dollarVolumeBySymbol[x.Symbol], reverse=True)
if len(sortedByDollarVolume) == 0:
return Universe.Unchanged
self.lastMonth = algorithm.Time.month
return [x.Symbol for x in sortedByDollarVolume[:self.numberOfSymbolsFine]]