| Overall Statistics |
|
Total Trades 973 Average Win 1.58% Average Loss -0.76% Compounding Annual Return 21.455% Drawdown 25.000% Expectancy 0.722 Net Profit 1130.440% Sharpe Ratio 1.116 Probabilistic Sharpe Ratio 53.481% Loss Rate 44% Win Rate 56% Profit-Loss Ratio 2.07 Alpha 0.187 Beta 0.036 Annual Standard Deviation 0.171 Annual Variance 0.029 Information Ratio 0.379 Tracking Error 0.248 Treynor Ratio 5.317 Total Fees $4577.92 |
from QuantConnect.Data.UniverseSelection import *
import math
import numpy as np
import pandas as pd
import scipy as sp
# import statsmodels.api as sm
class InOutWithFundamentalFactorAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2008, 1, 1) #Set Start Date
self.SetEndDate(2020, 11, 27) #Set Start Date
self.SetCash(100000) #Set Strategy Cash
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
self.spy = self.AddEquity("SPY", Resolution.Minute).Symbol
self.holding_months = 1
self.num_screener = 100
self.num_stocks = 10
self.formation_days = 200
self.lowmom = False
self.month_count = self.holding_months
#self.Schedule.On(self.DateRules.MonthEnd("SPY"), self.TimeRules.AfterMarketOpen('SPY', 120), Action(self.big_rebalance))
#self.Schedule.On(self.DateRules.MonthEnd("SPY"), self.TimeRules.AfterMarketOpen('SPY', 120), Action(self.rebalance))
# rebalance the universe selection once a month
self.rebalence_flag = 0
# make sure to run the universe selection at the start of the algorithm even it's not the manth start
self.flip_flag = 0
self.first_month_trade_flag = 1
self.trade_flag = 0
self.symbols = None
res = Resolution.Minute
# Feed-in constants
self.INI_WAIT_DAYS = 15 # out for 3 trading weeks
# Market and list of signals based on ETFs
self.MRKT = self.AddEquity('SPY', res).Symbol # market
self.PRDC = self.AddEquity('XLI', res).Symbol # production (industrials)
self.METL = self.AddEquity('DBB', res).Symbol # input prices (metals)
self.NRES = self.AddEquity('IGE', res).Symbol # input prices (natural res)
self.DEBT = self.AddEquity('SHY', res).Symbol # cost of debt (bond yield)
self.USDX = self.AddEquity('UUP', res).Symbol # safe haven (USD)
self.GOLD = self.AddEquity('GLD', res).Symbol # gold
self.SLVA = self.AddEquity('SLV', res).Symbol # vs silver
self.UTIL = self.AddEquity('XLU', res).Symbol # utilities
self.INDU = self.PRDC # vs industrials
self.SHCU = self.AddEquity('FXF', res).Symbol # safe haven currency (CHF)
self.RICU = self.AddEquity('FXA', res).Symbol # vs risk currency (AUD)
self.FORPAIRS = [self.GOLD, self.SLVA, self.UTIL, self.SHCU, self.RICU]
self.SIGNALS = [self.PRDC, self.METL, self.NRES, self.DEBT, self.USDX]
# Initialize variables
## 'In'/'out' indicator
self.be_in = 999 #initially, set to an arbitrary value different from 1 (in) and 0 (out)
## Day count variables
self.dcount = 0 # count of total days since start
self.outday = 0 # dcount when self.be_in=0
## Flexi wait days
self.WDadjvar = self.INI_WAIT_DAYS
# set a warm-up period to initialize the indicator
self.SetWarmUp(timedelta(350))
self.Schedule.On(
self.DateRules.EveryDay(),
self.TimeRules.AfterMarketOpen('SPY', 120),
self.rebalance_when_out_of_the_market
)
def rebalance_when_out_of_the_market(self):
# Returns sample to detect extreme observations
hist = self.History(
self.SIGNALS + [self.MRKT] + self.FORPAIRS, 252, Resolution.Daily)['close'].unstack(level=0).dropna()
hist_shift = hist.apply(lambda x: (x.shift(65) + x.shift(64) + x.shift(63) + x.shift(62) + x.shift(
61) + x.shift(60) + x.shift(59) + x.shift(58) + x.shift(57) + x.shift(56) + x.shift(55)) / 11)
returns_sample = (hist / hist_shift - 1)
# Reverse code USDX: sort largest changes to bottom
returns_sample[self.USDX] = returns_sample[self.USDX] * (-1)
# For pairs, take returns differential, reverse coded
returns_sample['G_S'] = -(returns_sample[self.GOLD] - returns_sample[self.SLVA])
returns_sample['U_I'] = -(returns_sample[self.UTIL] - returns_sample[self.INDU])
returns_sample['C_A'] = -(returns_sample[self.SHCU] - returns_sample[self.RICU])
self.pairlist = ['G_S', 'U_I', 'C_A']
# Extreme observations; statist. significance = 1%
pctl_b = np.nanpercentile(returns_sample, 1, axis=0)
extreme_b = returns_sample.iloc[-1] < pctl_b
# Determine waitdays empirically via safe haven excess returns, 50% decay
self.WDadjvar = int(
max(0.50 * self.WDadjvar,
self.INI_WAIT_DAYS * max(1,
np.where((returns_sample[self.GOLD].iloc[-1]>0) & (returns_sample[self.SLVA].iloc[-1]<0) & (returns_sample[self.SLVA].iloc[-2]>0), self.INI_WAIT_DAYS, 1),
np.where((returns_sample[self.UTIL].iloc[-1]>0) & (returns_sample[self.INDU].iloc[-1]<0) & (returns_sample[self.INDU].iloc[-2]>0), self.INI_WAIT_DAYS, 1),
np.where((returns_sample[self.SHCU].iloc[-1]>0) & (returns_sample[self.RICU].iloc[-1]<0) & (returns_sample[self.RICU].iloc[-2]>0), self.INI_WAIT_DAYS, 1)
))
)
adjwaitdays = min(60, self.WDadjvar)
# self.Debug('{}'.format(self.WDadjvar))
# Determine whether 'in' or 'out' of the market
if (extreme_b[self.SIGNALS + self.pairlist]).any():
self.be_in = False
self.outday = self.dcount
for symbol in self.Portfolio.Keys:
if symbol.Value != "TLT":
self.Liquidate(symbol.Value)
self.AddEquity("TLT")
self.SetHoldings("TLT", 1)
#self.Debug("Be OUT TRIGGERED: " + str(self.Time))
if self.dcount >= self.outday + adjwaitdays:
#So this logic is best put as: we are about to flip the be_in to TRUE
#so right before that do the rebalance otherwise everyday it be_in is true it will try to rebalance
if not self.be_in:
self.flip_flag = 1
self.big_rebalance()
self.rebalance()
self.flip_flag = 0
self.be_in = True
#self.Debug("Be IN TRIGGERED: " + str(self.Time))
self.dcount += 1
self.Plot("In Out", "in_market", int(self.be_in))
self.Plot("In Out", "num_out_signals", extreme_b[self.SIGNALS + self.pairlist].sum())
self.Plot("Wait Days", "waitdays", adjwaitdays)
def CoarseSelectionFunction(self, coarse):
#self.Debug(str(self.Time) + "CoarseSelectionFunction: be_in:" + str(self.be_in) + " flip_flag:" + str(self.flip_flag))
if (self.rebalence_flag or self.first_month_trade_flag) and (self.be_in or self.flip_flag):
# drop stocks which have no fundamental data or have too low prices
selected = [x for x in coarse if (x.HasFundamentalData) and (float(x.Price) > 5)]
# rank the stocks by dollar volume
filtered = sorted(selected, key=lambda x: x.DollarVolume, reverse=True)
return [ x.Symbol for x in filtered[:200]]
else:
return self.symbols
def FineSelectionFunction(self, fine):
#self.Debug(str(self.Time) + "FineSelectionFunction: be_in:" + str(self.be_in) + " flip_flag:" + str(self.flip_flag))
if (self.rebalence_flag or self.first_month_trade_flag) and (self.be_in or self.flip_flag):
hist = self.History([i.Symbol for i in fine], 1, Resolution.Daily)
try:
filtered_fine = [x for x in fine if (x.ValuationRatios.EVToEBITDA > 0)
and (x.EarningReports.BasicAverageShares.ThreeMonths > 0)
and float(x.EarningReports.BasicAverageShares.ThreeMonths) * hist.loc[str(x.Symbol)]['close'][0] > 2e9]
except:
filtered_fine = [x for x in fine if (x.ValuationRatios.EVToEBITDA > 0)
and (x.EarningReports.BasicAverageShares.ThreeMonths > 0)]
top = sorted(filtered_fine, key = lambda x: x.ValuationRatios.EVToEBITDA, reverse=True)[:self.num_screener]
self.symbols = [x.Symbol for x in top]
self.rebalence_flag = 0
self.first_month_trade_flag = 0
self.trade_flag = 1
return self.symbols
else:
return self.symbols
def OnData(self, data):
pass
def big_rebalance(self):
self.rebalence_flag = 1
def rebalance(self):
#self.Debug(str(self.Time) + "rebalance: be_in:" + str(self.be_in) + " flip_flag:" + str(self.flip_flag))
spy_hist = self.History([self.spy], 120, Resolution.Daily).loc[str(self.spy)]['close']
if self.Securities[self.spy].Price < spy_hist.mean():
for symbol in self.Portfolio.Keys:
if symbol.Value != "TLT":
self.Liquidate(symbol.Value)
self.AddEquity("TLT")
self.SetHoldings("TLT", 1)
if self.symbols is None: return
chosen_df = self.calc_return(self.symbols)
chosen_df = chosen_df.iloc[:self.num_stocks]
self.existing_pos = 0
add_symbols = []
for symbol in self.Portfolio.Keys:
if symbol.Value == 'SPY': continue
if (symbol.Value not in chosen_df.index):
self.SetHoldings(symbol, 0)
elif (symbol.Value in chosen_df.index):
self.existing_pos += 1
weight = 0.99/len(chosen_df)
for symbol in chosen_df.index:
self.AddEquity(symbol)
self.SetHoldings(symbol, weight)
def calc_return(self, stocks):
hist = self.History(stocks, self.formation_days, Resolution.Daily)
current = self.History(stocks, 1, Resolution.Minute)
self.price = {}
ret = {}
for symbol in stocks:
if str(symbol) in hist.index.levels[0] and str(symbol) in current.index.levels[0]:
self.price[symbol.Value] = list(hist.loc[str(symbol)]['close'])
self.price[symbol.Value].append(current.loc[str(symbol)]['close'][0])
for symbol in self.price.keys():
ret[symbol] = (self.price[symbol][-1] - self.price[symbol][0]) / self.price[symbol][0]
df_ret = pd.DataFrame.from_dict(ret, orient='index')
df_ret.columns = ['return']
sort_return = df_ret.sort_values(by = ['return'], ascending = self.lowmom)
return sort_return